SCIENCE ROBOTICS | RESEARCH ARTICLE

ARTIFICIAL INTELLIGENCE

Beyond imitation: Zero-shot task transfer on robots
by learning concepts as cognitive programs

Miguel Lazaro-Gredilla*, Dianhuan Lin, J. Swaroop Guntupalli, Dileep George*

Humans can infer concepts from image pairs and apply those in the physical world in a completely different
setting, enabling tasks like IKEA assembly from diagrams. If robots could represent and infer high-level concepts, then
it would notably improve their ability to understand our intent and to transfer tasks between different environments.
To that end, we introduce a computational framework that replicates aspects of human concept learning. Concepts are
represented as programs on a computer architecture consisting of a visual perception system, working memory, and
action controller. The instruction set of this cognitive computer has commands for parsing a visual scene, directing
gaze and attention, imagining new objects, manipulating the contents of a visual working memory, and controlling
arm movement. Inferring a concept corresponds to inducing a program that can transform the input to the output.
Some concepts require the use of imagination and recursion. Previously learned concepts simplify the learning of
subsequent, more elaborate concepts and create a hierarchy of abstractions. We demonstrate how a robot can use
these abstractions to interpret novel concepts presented to it as schematic images and then apply those concepts in
very different situations. By bringing cognitive science ideas on mental imagery, perceptual symbols, embodied
cognition, and deictic mechanisms into the realm of machine learning, our work brings us closer to the goal of building

Copyright © 2019
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original US.
Government Works

robots that have interpretable representations and common sense.

INTRODUCTION

Humans are good at inferring the concepts conveyed in a pair of images
and then applying them in a completely different setting—for example,
the concept of stacking red and green objects in Fig. 1A applied to the
different settings in Fig. 1 (B to D). The human-inferred concepts are at
a sufficiently high level to be effortlessly applied in situations that look
very different, a capacity so natural that it is used by IKEA and LEGO to
make language-independent assembly instructions. In contrast, robots
are currently programmed by tediously specifying the desired object lo-
cations and poses or by imitation learning where the robot mimics the
actions from a demonstration (1-4). By relying on brittle stimulus-
response mapping from image frames to actions, the imitation-learning
policies often do not generalize to variations in the environment, which
might include changes in size, shape, and/or appearance of objects; their
relative positions; background clutter; and lighting conditions (5).

If, like people, a robot could extract the conceptual representation
from pairs of images given as training examples (Fig. 1A) and then ap-
ply the concept in markedly different situations and embodiments, then
it would greatly increase their adaptability to new situations and to un-
structured environments. A shared conceptual structure with humans
would also simplify communicating tasks to a robot at a high level and
help to improve their conceptual repertoire with further interactions.

A concept is a redescription of everyday experience into a higher
level of abstraction (6, 7). One way to characterize the pictures in
Fig. 1 is a pixel-by-pixel description of the changes from the input
image to the output, a description that will not generalize to new situa-
tions. Concepts enable a higher level of description that generalizes to
new situations and ground (8, 9) verbal expressions like “stack green
objects on the right” with real-world referents. In contrast to the visuo-
spatial concepts like the one in Fig. 1A that are easy and immediate even
for children (10), numerical concepts like the one shown in Fig. 1E are
neither easy nor immediate for people. The concepts that are easy and

Vicarious Al, CA, USA.
*Corresponding author. Email: miguel@vicarious.com (M.L.-G.); dileep@vicarious.
com (D.G)

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

immediate, and form the basis of common sense in humans, are a very
small subset of all potential concepts.

Here, we hypothesize that human concepts are programs, termed
cognitive programs (11), implemented on a biased Turing machine
(12) [e.g., a “Human Turing Machine” (13)] whose architectural con-
straints and biases are fundamentally different from the prevalent von
Neumann style (14) architectures. Under this hypothesis, the inductive
biases encoded in the architecture and instruction set of this computer
explain why visuospatial concepts like those in Fig. 1A are easy and
intuitive for humans, whereas the numeric concept shown in Fig. 1E
is more difficult and unintuitive. In this view, concepts arise from the
sequencing of elemental operations (15) on a cognitive computer
according to a probabilistic language of thought (16, 17), and their
generalization to new situations arises out of skillful deployment of
visual attention, imagination, and actions.

Our current work builds on several key ideas from both cognitive
and systems neuroscience—such as visual routines (18), perceptual
symbol systems (6), image schemas (7, 19, 20), deictic mechanisms
(21), and mental imagery (22)—and brings them into the foray of ma-
chine learning. Following the ideas of perceptual symbol systems (6)
and image schemas (23), we treat concepts as simulations in a sensori-
motor system with imageable spatial information forming its funda-
mental building block (20). To this end, we developed a computer
architecture called visual cognitive computer (VCC) and represented
concepts as programs on this computer. The main components of VCC
include a vision hierarchy (VH) (24), a dynamics model for interactions
between objects (25), an attention controller, an imagination blackboard,
a limb controller, a set of primitives, and program induction. We evalu-
ated our architecture on its ability to represent and infer visuospatial con-
cepts that cognitive scientists consider to be the fundamental building
blocks (20). By building a working computational model and by evaluat-
ing it on real-world robotics applications, we brought several of these
ideas, which exist purely as descriptive theories, into a concrete framework
useful for hypothesis testing and applications.

Given input-output examples indicating concepts (Fig. 1A), we in-
duced programs in this architecture and executed those programs on

1 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A input output (9 E

X A Execute input = output

C t
8) P 3 54
3 10 = 523
& 25 3178
] > 4 2
£ Extract the concept
,g representation
B
A

&
Execute
Concept

B g5
r

Execute
] Concept
i £

Fig. 1. People can easily understand the concept conveyed in pairs of images, a capability that is exploited by LEGO and IKEA assembly diagrams. (A) People
interpret the concept conveyed by these images as stacking red objects vertically on the right and green objects horizontally at the bottom. (B) Given a novel image, people can
predict what the result of executing the concept would be. (C) Concepts inferred from schematic images as in (A) can be applied in real-world settings. (D) Enabling robots to
understand concepts conveyed in image pairs will significantly simplify communicating tasks to robots. (E) Not all concepts conveyed as input-output pairs are as readily apparent

to humans as the visual and spatial reasoning tasks.

different robots to perform the desired tasks (Fig. 1, B to D). In contrast
to imitation learning where a robot mimics a demonstration in the same
setting, we show that the cognitive programs induced on our proposed
architecture learned the underlying concepts and generalized well to
markedly new settings without explicit demonstrations. Cognitive
programs exhibited schematic-to-real transfer similar to the capability
of humans to understand concepts from schematic drawings and then
apply them in situations that look very different (26).

Cognitive programs on a VCC
In this section, we describe the architecture of VCC, introduce the
tabletop world where it is evaluated, and provide an overview of program
induction on VCC. VCC is a mechanistic consolidation of visual percep-
tion, a dynamics model, actions, attention control, working memories,
and deictic mechanisms into a computer architecture. The design process
for VCC started with architectural sketches provided in previous works
(11, 13) based on cognitive (6, 18) and neuroscience (15, 22) considera-
tions. These architectural sketches provided functional requirements,
rough block diagrams, and descriptive theories as a starting point but
no computational models. This initial architecture was then refined
and extended by codesigning it with an instruction set from the viewpoint
of succinctness and completeness in program induction (17, 27).
Figure 2A shows the architecture of VCC that includes the em-
bodiment of the agent. The agent has a hand that can move objects
either in the real world or in imagination and an eye whose center
can be positioned within an input scene using fixation movements. The
VH can parse input scenes containing multiple objects and can imagine
objects, similar to the generative model we developed in (24) where top-
down attention is used to segment out objects from background clutter.
Parsed objects of a scene are stored in the object-indexing memory and
are ordered according to their distance from the center of fixation. The
dynamics model combined with the VH lets VCC predict the effect

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

of imagined movements and write those results into the imagination
blackboard. The attention controller is used selectively and, in a top-
down manner, attends to objects based on their category or color.
Top-down attention also acts as an internal pointing mechanism (21)
to reference objects in the imagination blackboard. An external agent—
a teacher, for instance—can interact with the VCC agent by showing it
images and by directing its attention with a pointer (28).

In addition to the imagination blackboard, VCC has other struc-
tured working memories for object indexing, color indexing, and fixa-
tion history. The working memories are structured in how they represent
their content, and their locality to their controllers enforces structured
access; the instructions that can read from and write to specific memories
are prespecified. Figure 2B lists the instruction set of VCC and their
mapping to the different controllers. The VCC instruction set was heavily
influenced by the primacy of objects and spatial primitives in human
cognition (29) and by the elemental operations that have been pre-
viously proposed (11, 15). See the Supplementary Materials for im-
plementation details of the instruction set.

One critical design consideration for VCC is the ease of program
induction. As an effect of having working memories that are local and
specific to instructions rather than as generic registers in a von Neumann
architecture, the program induction search is vastly simplified because of
the fewer unbound variables in a candidate program (see fig. S1 for input
and output working memory mappings of some of the instructions).
Looping constructs Lloop_start and loop_end are constrained
to loop over the currently attended objects in a scene. The instructions
set color_ attn, set shape attn, fixate location,
and imagine object have arguments that determine their ef-
fect. During program induction, the arguments to be used for a par-
ticular input-output pair can be explicitly searched or predicted from
the inputs by using neural networks that are trained for that purpose.
In addition, the arguments to the fixate location command

2 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewaoualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A B | .
— Object and nstruction set
induction and color indexing o .
execution control Vision Hierarchy p— 1
scene_parse Hanc _conroL
Attention top_down_attend grab_object
controller fill_color() release_object
imagine_object() move_hand_to_ﬁ)‘(atlon
Dynamics fixation history move_hand_to_pointer
Model Attention control move_hand_left
1 t set_shape_attn() move_hand_right
Hand Fixati set_color_attn() move_hand_up
ixation
controller el reset_attn move_hand_down
top-down o
move_hand_to_attended_object

imagination
blackboard

Fixation control
fixate_attended_object
fixate_previous
fixate_next
fixate_pointer
fixate_location()

Object indexing
loop_start
loop_end
next_object

Fig. 2. Architecture and the full instruction set of the VCC. (A) Building blocks of VCC and their interactions. VH parses an input scene into objects and can attend to objects
and imagine them. The hand controller has commands for moving the hand to different locations in the scene, and the fixation controller commands position the center of the
eye. Object indexing commands iterate through the objects currently attended to. The attention controller can set the current attention based on object shape or color. (B) The full
instruction set of VCC. Parentheses denote instructions with arguments. All concepts are represented using learned sequences of these 24 primitive instructions.

can be set externally by a teacher by the use of a pointer. A learner that
takes advantage of “fixation guidance” from a teacher or accurate pre-
dictions of instruction arguments from a neural network can speed up
induction by reducing the search space.

To guide the design and evaluation of VCC, we used visual concepts
in “tabletop world” (TW) corresponding to the spatial arrangement of
objects on a tabletop (Fig. 3A). TW allowed us to focus on imageable
objects and spatial primitives that are considered to be the first
conceptual building blocks (20) and provided a rich set of concepts to
rigorously test concept representation and generalization while having
simplified dynamics and perceptual requirements compared with the
full complexity of the real world. Object motions in TW are limited
to sliding along the surface of the table, and they stop moving when they
collide with other objects or with the boundary of the workspace. How
an agent generalizes its acquired concepts depends on the regularities of
the world it is exposed to and on the regularities in its interaction with
the world. By being a proper subset of the real world, TW enabled re-
presentation and discovery of concepts from schematic images while
still having real-world counterparts. The infinite number of physical
realizations of each TW concept enabled testing for strong generaliza-
tion on a physical robot.

Figure 3B shows a simple, manually written cognitive program for a
concept, serving to illustrate the representational properties of the VCC.
The concept involves making the object close to the center touch the other
object in the scene. Because the fixation is centered by default, the cen-
tered object is highlighted on the first call to top _down_attend. After
moving the hand toward that object and grabbing it, next object
command is used to switch the attention to the other object. Moving
the grabbed object toward the other object until collision achieves the
desired goal of making the objects touch. Stopping the object when it
comes into contact with another object requires access to the details of
the outer contours of the object, a detail that is available only at the
bottom of the VH. In contrast to architectures like auto-encoders that
map a visual input to a fixed encoding in a feed-forward manner (30),
the imagination buffer of VCC allows for the details of the object to be
represented and accessed from the real world as required. As antici-
pated in (6), this allows the VH to be part of an interactive querying

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

of the world as part of a program rather than representing a scene in
one feed-forward pass for downstream tasks. In our current work, we
assumed that the VH and dynamics are already learned as described in
our earlier works (24, 25).

The problem of learning to represent concepts is this: Given a set of
input-output image pairs representing a concept, induce a program that
will produce the correct output image when executed on the VCC with
the corresponding input image. To solve this problem, we combined
insights from recent developments in program induction (31-37) with
the architectural advantages of VCC. Each program can be assigned a
probability based on a model for the space of programs. To efficiently
find a program for a given set of input-output pairs, our induction
method relies on searching for programs in decreasing order of prob-
ability, where the probabilities are determined on the basis of generative
models trained on already found programs and discriminative models
that are conditioned on current inputs (Fig. 4A). We used Markov
chains of instruction-to-instruction transitions (blue arrows in Fig. 4A)
as generative models. This was augmented with subroutine discovery,
which replaces a sequence of atomic instructions with a new instruction
that can then be used in the Markov chain. Updating the generative
model can be understood in the explore-compress (E-C) framework
(34) where induction alternates between an exploration phase and a com-
pression phase. During exploration, an existing generative model was
used to guide the search of new programs, and during compression, all
the programs found so far were used to update the generative model. The
generative model works as an input-agnostic prior for the space of future
programs given the concepts learned earlier. During search, this prior was
combined with “argument predictions”: predictions from discriminative
models (neural networks) (32) about the value that the argument of each
instruction will take, given that the instruction is part of the program. This
prediction is specific to instructions (green arrows in Fig. 4A) and
conditional on the specific input-output pairs that the program is being
induced for. If a teacher is available, then fixation guidance can be used as
an additional signal to predict the arguments of certain instructions. In
addition, run-time exceptions generated from the VCC, represented as
solid red circles in Fig. 4A, were used to prune the search space. See
Materials and Methods for more details.

3 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewaoualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

Move all objects
to top

Move red objects
to top

| Move square
objects to top

Move red
objects to top
and change color
to green

Change all
objects to color
green

Stack vertically

Arrange objects at pointed location

in a circle

Move circle
to touch square

Stack red objects
on the right

Stack red objects
on the right and
change color to
yellow

Change color of
square objects to
green

Move bottom
object to pointed
location

Move circle to
pointed location

Move bottom
object to pointed
location and
change color to
green

Move left-most
object to top

w ‘ >
* * * * *

Make central object touch the other object

scene_parse()
top_down_attend()
move_hand_to_attended_object()
grab_object()

next_object()
top_down_attend()
move_hand_to_attended_object()
release_object()

coNOYUTH WN P

7.8 output

Fig. 3. Concepts and their representation as cognitive programs. (A) Input-output examples for 15 different tabletop concepts. In our work, we tested on 546 different
concepts (see the Supplementary Materials for the full list). (B) A manually written program for a concept that requires moving the central object to touch the other
object. The images on the right show different stages during the execution of the program, with the corresponding line numbers indicated. The attended object is

indicated by a blue outline.

Although the VCC instructions are named to be meaningful to
humans to help with interpretation, the agent is unaware of the
meanings of these actions or how the different working memories
and indexing mechanisms can be leveraged to represent concepts.
By learning programs, the agent has to discover how to exploit the
actions and properties of the VCC to represent various concepts.

RESULTS

Our experiments show that concepts could be induced as cognitive
programs and that this enabled transfer from diagrammatic repre-
sentations to execution on a robot without any explicit demonstration.
We evaluated the performance of VCC on 546 different concepts, for
which manually written programs varied in number of instructions
from 4 to 23 (Fig. 4). We investigated how model-based search, input-
conditional argument prediction, and fixation guidance affect the speed

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

or learning. Using a combination of the best models, argument predic-
tion, and fixation guidance, 535 of the 546 concepts could be learned
with a search budget of 1 million programs, and 526 of them could
be learned with a search budget of 0.5 million programs. The induced
concepts readily generalized to settings where we varied the number
and size of objects, their appearance, and the color and texture of the
background. They could also be readily transferred to novel situations
on multiple robots to execute tasks in the real world.

Induced programs

Figure 4 (B to D) shows three examples from the 535 induced programs
that demonstrate how program induction used VCC properties to re-
present concepts. The first example (Fig. 4B) requires to move the left-
most object to the top. The learned program used the property that
VCC’s object-indexing memory orders objects by their distance from
the center of fixation. Although “the left-most object” is not an attribute

4 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewasusids sonoqol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A

Already discovered
programs

Generative model for
the space of

«—-——=—=—=—=———=

'S .

programs
Cal >
Ca2 >
A Cal > 1
o ___ |
: ®
g R

Cat >
Ca2 >

CaM >
................ -
this branch
output

target output

Move left-most object to the top

scene_parse()
fixate_location(“left”)
top_down_attend()
move_hand_to_attended_object()
grab_object()

move_hand_up()
release_object()

NOoO U WN B

Move first object right, move other object
to the previous location of first object

scene_parse()
top_down_attend()
fixate_attended_object()
move_hand_to_attended_object()
grab_object()
move_hand_right()
release_object()

next_object()
top_down_attend()

10 move_hand_to_attended_object()
11 grab_object()

12 move_hand_to_fixation()

1 2 3,4,5

OWoo~NOUTA WN B

8,9,10,11

Coo~NOUTHA WN -

=
S

11
12

1,2

11,12,5,6,7,8, 9,10

, el
. Ca2>
Discriminative model for Al
> predicting inst2
arguments <
B D

Arrange green objects in a circle

scene_parse()
set_color_attn(“green”)
imagine_object(“circle”)
next_object()
loop_start():
top_down_attend()
move_hand_to_attended_object()
grab_object()
move_hand_to_fixation()
release_object()
next_object()
loop_end()

3 4,5,6,7,8,9,10

%

11,12,5,6,7,8

Fig. 4. Program search and discovered programs. (A) Program induction searches in an exponential space represented as a tree, where each node (solid circle) is a

program. Blue branches are instruction-to-instruction transition probabilities modeled using a generative model, and green branches are instruction-to-argument

probabilities predicted using discriminative neural nets trained on input-output images. The probability of a program depends on the weights of the branches leading
to its node. Solid red circles are programs that generated an exception in the VCC, and the green node is a correct program. (B to D) Three examples of discovered
programs and visualizations of their execution steps. Digits next to the visualizations correspond to program line numbers.

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019)

16 January 2019

5 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewasusids sonoqol//:dny wol papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

directly encoded in VCC, that concept was represented as a combina-
tion of other primitive actions.

Figure 4C shows an example where induction discovered the use
of a deictic mechanism. The concept required moving the central object
to the right edge and moving the other object to the position previously
occupied by the first object. Achieving this requires holding the position
of the previous object in working memory. Induction discovered that
the fixation center can be used as a pointer to index and hold object
locations in memory. The discovered program moves the center of
the eye to the first object after attending to it and grabbing it. Because
the eye fixation remains at the initial position of the first object when the
object is moved away, the second object can be moved to the correct
position by simply moving it to the fixated location. The concept of ar-
ranging small circles into a big circle (Fig. 4D) requires the agent to
imagine an object that does not exist (the big circle) and then push other
objects toward this imagined object while it is maintained in the
working memory. This is an example where teaching by demonstration
is likely to face challenges because the intermediate stages of that
demonstration would provide only scant cues about the final goal of
arranging objects in a circle.

Induction dynamics
We tested the efficacy of program induction under a wide variety of
settings. For model-based search, we compared an order-0 model
that only considers the relative frequencies of instructions to an
order-1 model that learns the transition probabilities of instructions
in programs. In each case, we tested the effect of learning subroutines.
We tested the effect of combining the order-1 model with neural
network-based predictions for the arguments of each instruction. We
also tested the effect of fixation guidance where pointing action by a
teacher was used to set the fixation location in the learning agent.
Iteratively discovering the programs by modifying the model that is
driving the search process and augmenting that model with input-
conditioned argument predictions are both important for discovering
the complex concepts with longer programs. Figure 5 (A to D) shows
the length distributions of the programs induced after each E-C
iteration for different settings, for a search budget of 1 million programs.
The histogram of the number of programs of different lengths is plotted
along with a ground-truth distribution. (The ground truth is derived on
the basis of manually writing programs for each of the concepts. The
discovered program for any particular concept need not match the
ground-truth program in implementation or length). When argument
prediction was not available, program induction relied on searching ex-
haustively in the argument space. Without argument prediction, no
programs with a length of more than 12 instructions were induced,
whereas with input-conditioned prediction of arguments programs with
a length of up to 18 instructions were induced. Overall, without argu-
ment prediction, only 150 of the 546 concepts were induced, whereas
argument prediction and subroutines enabled the discovery of 526 of
546 concepts. Iterative refinement of the model using the discovered
programs at each stage resulted in more programs being discovered in
the next iteration of search. Figure 5 (A to C) shows the length distribu-
tions of programs discovered after each E-C iteration. The distributions of
the discovered programs shifted right with each iteration, successively dis-
covering longer programs that were missed in the previous iteration. The
progression of concepts learned during multiple E-C iterations demon-
strates the advantage of learning to learn (38) in program induction.
A teacher can help the agent learn faster by guiding the agent’s
attention by pointing. We tested the effect of having a teacher guide

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

the fixation of the agent for concepts that require using the fixate
location () function similar to the joint attention mechanism hy-
pothesized in cognitive science (28). This was achieved by setting the
argument of the fixate location () function to the location
pointed by the teacher. In contrast to other instructions, the arguments
forthe fixate location () function were not predictable from the
input-output image pairs, and program induction relied on searching
the argument space in the absence of any other guidance. The effect of
offering fixation guidance was most significant at search budget of 0.4
million, as shown in Fig. 5E. In this setting, using fixation guidance
increased the number of discovered programs from 148 to 524. Although
fixation guidance from a teacher was applied here in a very limited set-
ting, this shows that prespecified joint attention mechanisms with a
teacher hold promise for significantly speeding up induction.

Overall, using model-based search using an order-1 model and
argument prediction were the most important factors that determined
how quickly the programs could be learned. Figure 5 (E to H) shows the
effect of various factors as the search budget was varied from 0.25 to
3 million programs. When an order-1 model was used, induction of
subroutines played a smaller role in the induction of new programs:
Although subroutines that reduced the description length were ob-
tained after each compression iteration, they provided only a modest
help in the future discovery of programs. To give a sense of the re-
quired computational effort, we note that searching 1 million programs
took around 10 min when using a single core.

Modeling the sequential relationship between the instructions of
learned concepts significantly helped with program induction, compared
with modeling just the instruction frequencies. We tested an order-0
model that ignored the sequential dependencies and an order-1 Markov
model between the instructions as the models used in the E-C iterations.
Of 546 concepts and with a search budget of 1 million programs, the
order-0 model was not able to induce any new concept when subroutines
were disabled and only 7 new concepts when they were enabled (39). In
contrast, an order-1 model was able to learn 525 of the 546 concepts for
the same search budget (Fig. 6B). Figure 6A shows the transition matrix
of the order-1 Markov model after iterations 0, 2, and 4. The transition
matrix learned additional relevant modifications, with each iteration that
enabled more concepts to be learned in future iterations.

Most concepts were learned correctly with just a few input-output
examples and generalized well to markedly different images depicting
the same concepts. Figure 6C shows the learning curve for concepts dis-
covered in the first E-C iteration (107 concepts, including 16 bootstrap-
ping ones). The learning curve flattens out after five examples. Figure
6D shows an example of the confusion caused when the number of
examples is fewer. Although the concept required moving the yellow
triangle to the middle, in the first two examples, this could be achieved
just by moving to the middle whichever triangle was closest to the center.
The generalization of the induced concepts to new situations was tested
using concept images generated with different numbers of objects and
visual transformations, examples of which are shown in Fig. 7A. The test
images were generated by varying the backgrounds, object foregrounds,
number and kinds of objects, and their placements within the image. For
each concept, we tested on 50 different test images generated by sampling
from these parameters. More examples of test images are shown in fig. $4.
All the induced concepts generalized to a 100% of these new settings.

Transfer to robots
Induced concepts transferred readily from the schematic inputs to the

real-world execution on two different robots: a Baxter from Rethink

6 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A 300 Subroutine Disabled , Iteration 0 B 300 Subroutine Disabled , Iteration 1
280 4 EE Arg search 280 BN Arg search
EEE Arg prediction EEE Arg prediction
260 1 B Fixation guidance + Arg prediction 260 1 B Fixation guidance + Arg prediction

£ 240 1 mmm Total num of concepts £ 240 1 mmm Total num of concepts

Q aQ
© 220 1
v
c
o
o
°
]
2
[e]
wn
[
5]
=
9]
Q
€
3
z

2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Length of induced programs Length of induced programs
C o , D) ,)
300 Subroutine Disabled , Iteration 2 300 Final results with subroutine enabled
280 B Arg search B Arg search
H Arg prediction 270 mmm Arg prediction
260 I Fixation guidance + Arg prediction I Fixation guidance + Arg prediction
g 240 4 mmm Total num of concepts .g 240 1 mmm Total num of concepts
g g 210+
S 8
- 5 1801
: g
S 1501
"
‘5 120
C
& 90
€
3
Z 60
30 1
0 m
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Length of induced programs Length of target programs
E F
550 550
= == —— Order0
500 5001 — orderl
0 450 1 0 450 4
Q Q
8 400 8 400 4
c c
S 350 1 S 350 1
8 o
£ 3001 2 300 4
<] ©
@ 250 4 0 250 A
w— w—
o o
$ 2001] 200 A
Q Q
€ 150 4 € 150 A
E 2
100 A —— Arg search 100 1
50 4 = Arg prediction 50 4
— Fixation guidance + Arg prediction
0 T T T T T T 0 T —T T T T T
0.25 03504 0.5 1 2 3 0.25 03504 0.5 1 2 3
Number of searched programs in millions Number of searched programs in millions
G H
Order 1 + Arg prediction Order 0 + Arg prediction
650 650
600 {1 ™ No subroutine 600 1 ™= No subroutine
550 4 I With subroutine 550 1 B With subroutine
n
a 500 A
2 450 A
© 400 A
K
2 350+
? 300 1
s
s 250
2 200 1
é 150 A
100 A
501 . ‘
04
0.25 0.5 1 2 3 0.25 0.5 1 2 3
Number of searched programs in millions Number of searched programs in millions

Fig. 5. Program induction details. (A to C) Length distribution of induced programs for the first three E-C iterations. X axis bins correspond to program lengths
(number of atomic instructions). The gray bars represent the total number of programs of that length according to a set of manually written programs comprising all
concepts. (D) Distribution at the end of all iterations. (E and F) Number of induced programs for different search budgets and for different model options. (G and H)
Effect of subroutines.

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019 7 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogos//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A iteration 0

iteration 2 iteration 4

0 2 4 6 8101214161820222426

300

0 2 4 6 8101214161820222426

EEE Order0
270 - mmm Orderl
Total num of concepts

epts

PP NN

U o B b

©o ©o o o
L L L L

onct

90 -

Number of solved ci
=
N
o
!

2 4 6

14 16 18 20 22 24
Length of target programs
Target concept: move yellow triangle to the middle and
change to red

60

301 J I

0 e R y I
8 10 12

0 2 4 6 8101214161820222426

C

904
804
704
60 1
50 4
404
30
20

Number of success solved tasks

101
04

Number of exampels

Input Output
>* >*
* >*
A
| |
* A * A
A A
A
L 2 *
4 L 2
* L 4
e A <A A
| |
[|
A N A

Incorrect program1 induced
from the first example

scene_parse()
top_down_attend()
move_hand_to_attened_object()
grab_object()
move_hand_to_fixation()
change_color()

Incorrect program2 induced
from the first two examples

scene_parse()
set_shape_attn(’triangle_shape’)
top_down_attend()
move_hand_to_attened_object()
grab_obiject()
move_hand_to_fixation()
change_color()

Correct program induced from
the first four examples

scene_parse()
set_shape_attn(’triangle_shape’)
set_color_attn(‘yellow’)
top_down_attend()
move_hand_to_attened_object()
grab_object()
move_hand_to_fixation()
change_color()

Fig. 6. Program induction and generalization. (A) The instruction-to-instruction transition matrix after different E-C iterations. (B) Length distribution of programs
induced using order-0 versus order-1 model. (C) Training curve. Most concepts are solved with just a few examples. (D) An example showing wrongly induced programs
when only three training examples from a concept are presented, where accidental patterns in the data can explain the examples. In this case, the correct concept was

induced with four examples.

Robotics and a UR5 from Universal Robots. The primitive instructions
for perception and action, such as capturing the input scene and con-
trolling the hand, were implemented using the respective robots’ in-
terface, while the rest of the VCC instructions remained the same. We
tested the transfer of five different induced concepts on the two robots,
and each concept was tested in several different scenarios by changing the

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

number and types of objects, their positions, the number of distractor
objects, and the appearance of the backgrounds. In each case, the initial state
of the test scenarios was constructed such that running the induced program
on the input image would produce the right output in VCC’s imagination.

Figures 7 and 8 show the robots at different stages of the execution of
the concepts for a sampling of the settings we tested on. The concepts

8 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

A Move topmost to left and blue to top

Training examples Induced program

A A ¥
® ., O

scene_parse()
fixate_location(‘top’)
top_down_attend()

m move_hand_to_attended_object()

° P grab_object()
move_hand_left()
* m *x release_object()

set_color_attn(‘blue’)
top_down_attend()
move_hand_to_attended_object()
grab_object()

move_hand_up()
release_object()

input

output

Generalization to robot

Fig. 7. Generalizing to new settings and to the real world. (A) Training examples and induced program
corresponding to the concept “move topmost to left and blue to top.” The right columns show different test settings
to which the program generalizes. The test settings are all very different from the training setting except for their
conceptual content. (B) The concept in (A) executed on Baxter robot with very different objects compared with the

training setting. Different stages in the execution are shown.

are executed correctly despite the variations to the number of objects,
their sizes, positions, and variations in the background, as long as the
information relevant for the concept is present in the input. In Fig. 8A,
we show the stacking concept executed in three different settings. The
different stacking concepts were executed correctly with the objects
properly in contact in their final states, even when the sizes and types

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

of objects were significantly different. Out
of the total test scenarios that were tried,
the robot UR5 succeeded in executing the
& concepts in more than 90% of the trials.
" The failures were caused by the objects
slipping out of the gripper during a grasp
or during placement. On Baxter, the suc-
cess rate was lower (at about 70%) due to a
blurry camera, a less effective gripper, and
imprecise motion in our aging robot.
We also show how a complex concept
that could not be induced directly could
be broken into two different concepts
and executed consecutively on the robot
to achieve the more complex task. The
final task requires moving the yellow ob-
jects on the table to the left and the green
object on the table to the right, which can
be achieved as a combination of the first
set of movements with the second. We
show an application where the concept
can be used to separate lemons from limes
(Fig. 8B). The reader is encouraged to
view the robot demonstration videos
available as the Supplementary Materials.

Generalization settings

. . o

DISCUSSION

Getting robots to perform tasks without
explicit programming is one of the goals
in artificial intelligence and robotics. Im-
itation learning, a predominant approach
to this end, seeks to teach the robots via
demonstration. To demonstrate the ac-
tions required for a task, a robot could
be physically guided or operated remotely
(1, 40). Robot operation is very time con-
suming, so one-shot approaches that try
to learn executable policies from a single
demonstration have been developed
(2, 4, 41). The main drawbacks of imita-
tion learning approaches are their focus
on rote mimicry without understanding
the intent of a demonstration and their
tendency to latch onto surface statistics
and idiosyncrasies of the demonstration
(19) rather than its conceptual content,
resulting in limited generalization to
new settings. Recent work (3) has sought
to build an intermediate representation
from a demonstration that would allow
generalization to more settings but still
relied on having a demonstration avail-
able for each variation of a task, in addition to having a large annotated
background set for the family of variations.

By focusing on the discovery of conceptual understanding from
pairs of images, our work is very different from the traditional setting
of imitation learning. No demonstrations are available, and the agent
has to discover the conceptual content and transformation that are

9 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

Fig. 8. Learned concepts transferred to different real-world settings. (A) Each row shows the starting state, an
intermediate state, and the ending state for three different execution scenarios for a concept that requires stacking
objects on the bottom left. The middle row shows execution on different objects, and the bottom row shows ex-
ecution on a different background. (B) Execution frames from an application that separates limes from lemons. This
task is achieved by the sequential composition of two concepts. (Left) The two concepts used (top and bottom) and

(right) execution of these concepts in sequence to achieve the task.

represented by the image pairs. Moreover, the discovered representa-
tions need to transfer to very different settings, including markedly
different visual appearances and different robot embodiments. Such
transfer requires visual analogy making (42, 43) as opposed to rote
imitation. Although we took inspiration from earlier works on learning
programs to describe the contents of images and videos (38, 44, 45),
those works focused on settings where the content to be described
was fully observable in the images or video demonstration. Our setting
is very different and significantly more challenging because of the need
to discover hidden variables underlying the concepts, the number of
steps involved in going from an input image to the output, and the need
for strong schematic-to-real generalization in settings significantly dif-
ferent from the training distribution.

The sequential and programmatic nature of conceptual representa-
tions has been well recognized in cognitive science and neuroscience,
with Ullman’s seminal paper on visual routines (18) and its implemen-
tations (46-52), and in prevalent cognitive architectures (53, 54) that use
sequential representations. Although sharing the motivations of se-

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

quential representations and chunking,
our work is a significant departure from
the traditional cognitive architectures of
ACT-R and SOAR in emphasizing the
perceptual, motor, and interactive nature
of concept representations. In having a
VH that is not a passive feed-forward
transducer, but an active system that can
be manipulated and reconfigured (11),
our architecture follows the guidelines of
perceptual symbol systems (6) rather than
pure symbol manipulation. VCC and cog-
nitive programs can also be thought of as
a concrete computational instantiation of
image schemas (55), an influential idea in
cognitive science that emphasizes the
grounded and embodied nature of con-
cepts. The programs that we learn on
VCC can be considered “patterns of sen-
sorimotor experience” that constitute a
concept, forming the basis for communi-
cation and grounded language (56). Our
work is also consistent with the idea of a
probabilistic language of thought (57)
where complex representations are formed
from small repertoire of primitives (16, 17).
Representing concepts as programs makes
them naturally compositional as required
for a language of thought (57), and prog-
rams provide explainability that has been
lacking in current black-box policy learn-
ing methods.

The tremendous success of deep learn-
ing (58, 59) along with discoveries of its
limitations has rekindled the age-old
debate about innate biases versus tabula
rasa learning (60). Bucking the recent
trend of tabula rasa learning with large
training sets, our work here focused on
learning programs on a biased computer
architecture whose biases were inspired
by cognitive science and neuroscience and by computational considera-
tions. We carefully considered the question of what is a good architec-
tural starting point (26) for the learning of concepts: What should be the
design of the processor (13)? What should be the elemental operations
(22)? We believe that the seeming arbitrariness and ambiguity of the
starting point is part of the challenge in bringing these ideas into a com-
putational model and need to be confronted directly (61). We tackled
this challenge by treating this as analogous to the design process of a
microprocessor where choices need to be made regarding the nature
of registers, memory, and instruction set. As described earlier, cogni-
tive and neurosciences provided significant guidance, which were then
refined from the view point of program induction. Although it is un-
likely that all the detailed choices we made in this first iteration are
the ones that will give rise to human-like concepts, many aspects of
VCC regarding the interaction of VH, imagery, working memory, at-
tention, action, and program induction are likely to remain in future
iterations. Through further theorizing and experimenting the design
of the VCC will be expanded and refined. We believe that this iterative

10 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

refinement of architectural priors, inductive biases, and learning algo-
rithms is an essential part of building systems that work like the human
mind (26).

A particularly important design choice is that of VH and top-down
attention. Rather than follow the prevailing machine-learning view
of treating vision as re-encoding the input for “downstream tasks”
(62), we treat the VH as a mechanism for structured interaction with
the world. In this view, the encoding of the world is not just at the top of
the hierarchy, and all details need not be represented at the top of the
VH in a loss-less manner as in deep neural network generative models.
The VH in our model is lossy, and the details can be accessed at the
input on demand, consistent with neuroscience ideas of using the
primary visual cortex as a high-resolution buffer for mental imagery
(22) and with the ideas of selective tuning of attention (63, 64). In this
design, the pattern of accessing the detail at the bottom, or the more
abstract representation at the top, becomes part of the representation
of the concept. Top-down attention also serves to achieve binding
(65)—for example, between the color and shape of an object—by using
attention as an internal pointing mechanism (21).

Many of the existing datasets that measure conceptual and abstract
reasoning have drawbacks that prevent them from being used in a study
for acquiring and representing concepts as sensorimotor programs.
Raven’s progressive matrices (RPMs) (66) are often used as a test for
conceptual representation. Instead of using RPM, we chose to use TW
because the properties of the world that give rise to generalization are
systematic and well understood. In contrast, in RPMs, the source of gen-
eralization can encompass the full experience of a young adult, includ-
ing all the generalizations that arise from a fully developed VH that can
reason about occlusions and transparency. Standard RPMs are also
restricted to being evaluated as a multiple-choice question. TW was also
inspired by the tasks introduced in (21) for deictic mechanisms but goes
beyond those in terms of complexity, analogy making, and transfer to
real-world execution. In contrast to datasets that measure pixel-accurate
image reconstructions in simplistic settings (67), use of the TW recog-
nizes the schematic nature of concepts (20) and enables the evaluation
of sensorimotor representations for their generalization to settings that
are different from the training distribution, including different real-
world settings involving robots.

One common approach in program synthesis is to combine a
domain-specific language with a context-free grammar, such that the
whole space of syntactically valid programs is derivable (all programs
that are generated would compile, and all programs that solve a task
would be generated with nonzero probability) (20, 68). To achieve this,
a popular choice is to use functional programming with type checking,
which guarantees successful execution of programs generated according
to the grammar. In contrast, we found that an imperative programming
language was more suited for our purpose and subjectively more
adequate to describe the thought process associated with a concept. This
does not guarantee error-free execution when sampling from a Markov
model, and some programs are rejected: The machine itself becomes
part of the model, conditioning on valid programs (as in rejection sam-
pling) and effectively pruning the search space. We took inspiration from
the recent work (33) in bringing the machine itself into program synthesis.

We are excited about the future research directions that our work
opens up. A richer set of primitive instructions that supports an inter-
play of bottom-up and top-down attention and uses the part-based re-
presentation of the VH could enable a wider variety of concepts. Perhaps
some of the primitives could be learned by having an agent interact
with the environment using mechanisms we elaborated earlier (69).

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

The use of joint attention by pointing can be expanded in scope to
direct top-down attention, not just fixation. Attributes of an object—
width, height, number of corners, etc.—could themselves be repre-
sented as sensorimotor programs that are learned with experience in
the real world but evaluated purely in imagination during execution.
Expanding the dynamics model to include three-dimensional (3D)
objects and combining it with occlusion reasoning and surface repre-
sentation abilities of the VH could result in a large number of real-
world concepts being learned as cognitive programs.

MATERIALS AND METHODS

Program induction

We are provided with a set of collections of input-output pairs of
images, with each collection corresponding to some unknown concept,
and we wish to infer the programs that describe each of those concepts.
A naive way to perform this inference is via brute force, but this
becomes unfeasible with increasing program lengths. However, it can
be useful as an initial step to discover the simplest of concepts to form
a bootstrapping set. To discover more sophisticated programs, we fitted
a probabilistic model to the programs in the bootstrapping set and then
used that model to guide the search starting from the most probable
program and searching in the order of decreasing probability. Once
some effort threshold was hit (for instance, number of programs
considered), we collected the found programs, refitted the probabilistic
model, and repeated. This approach is referred to as the E-C framework
in (34), where compression stands for fitting a probabilistic model
to data. The key for this approach to work properly is the probabil-
istic model.

We modeled programs (both instructions and arguments) as an
observed Markov chain. The model for the instructions is learned from
the already discovered concepts, whereas the emission model is
conditional on the input-output pairs of examples and is learned sepa-
rately. As we will see next, the whole induction process depends only on
two free parameters: a modeling parameter € (the pseudocount) and an
exploration parameter M (maximum number of explored nodes).

The probabilistic model

We start by considering programs as a sequence of instructions,
without arguments. A program x is a sequence of atomic instructions
X = [x1, Xy, ... x|, where the last instruction is always x| = e, a special
end-of-program marker. The probability of a single program is

L-1

logp(x) = logp(x1) + X logp(xisi|x)

where p(x;,,|x;) is the transition probability from instruction x; to
instruction x;,; and p(x;) are the initial probabilities. To compute
the probability of multiple programs {x'”} that we consider
independent, we can just add the log probabilities of each of them.
We can express this compactly by defining X = exVx®... as a
sequence that simply concatenates the programs (in any order)
and prepends an end-of-program marker. Then, the joint probability
of multiple sequences is simply

N-1

logp(X) = 2. logp(X;u|X:) ()

11 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

where N is the total length of all the programs combined, including
the initial marker. From a compression perspective, —logp(X) cor-
responds to the description length (in nats) of the collection of programs
under this model. Parameter fitting for this model amounts to
determining the transition matrix T,, where [T,],; = p(s|r). We use
the maximum likelihood estimator with a small pseudocount € to avoid
overfitting.

We can further enhance the model using subroutines. Subroutines
are sequences of instructions and can be incorporated into the model by
adding a dictionary D with subroutine definitions and allowing instruc-
tions to index not only atomic instructions but also subroutines. A
program with atomic instructions x can now be expressed in com-
pressed form ¢ by identifying the subroutines it contains and replacing
them with a single instruction containing the appropriate subroutine
call. The joint probability of all the programs X, its compressed repre-
sentations C, and the subroutine dictionary D is then

logp(X, C, D) = logp(X|C, D) + logp(C) + logp(D)
= logp(C) + logp(D) (2)

where the last equality follows from X being deterministically obtained
from Cand D, and therefore, logp(X|C,D) equals 0 for valid expansions
X of C. The two terms in the right-hand side (r.h.s.) can each be encoded
as concatenated sequences (as we did for X) and computed using Eq. 1.

To fit this model for a given X, we maximize Eq. 2 with respect to
the transition matrix T, (which is shared for both programs and sub-
routines), the compressed representation C, and the dictionary D. This
joint optimization is, in general, a difficult problem. We opt for a greedy
method: We consider the increase in logp(X, C, D) that inserting each
new possible subroutine in the dictionary (and updating C and T,
accordingly) would produce and insert the one that achieves the
maximum gain. Then, we repeat the process until no positive increase
is achievable, adding one subroutine at a time. We only consider as
potential subroutine sequences of instructions that appear multiple
times in the programs. In contrast to maximum likelihood estimation,
the maximum a posteriori estimation of D includes the prior and pro-
vides a trade-off in which subroutines are only deemed useful if they
appear often enough.

We now turn to modeling the arguments of the instructions of a
program. Each program x has an accompanying set of parameters
¥y = [¥1, ¥2...,y.] of the same length as x. Thus, each instruction
has exactly one parameter, which can take one value among a dis-
crete set of choices. Those choices are different for each instruction
and are given by the syntax of the language. For a given dictionary,
the probability of a full program (including now arguments) is

L—1
logp(. /D) = logp(x|e, D) + 2. logp(cj1[5)
L-1
+ i;l logp(yi+1 |xis1)

Lc—1 [N+

= logp(xlc.D) & 2. | Llogp(yjylx;s1s) +logp(cr1lg)

L—1

= 2 logp(yl61) + logp(cin1[g) (3)

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

where we have collected all the arguments that are used in a subroutine
¢jintoa single.vz.iriable Y= W yjn}} and removed logp(X CD)=0
(due to determinism) from the equation. We have already estimated all
the quantities in the above expression except for the conditional prob-
ability of the arguments logp(y;|x;) of a given atomic instruction, which
will be described in a subsequent section on argument prediction.

The exploration

To discover the concept that explains a particular input-output collec-
tion, we start by expressing the probability of a compressed program as
a Markov chain

L—1

logp(z) = j;l logp(zj41lz;)

where z; = (¢; ;) and the transition probability T, can be easily derived
by combining T, and p(y;|c;). We thus have a Markov model over
“program portions” z;, which can be either individual instructions or
subroutines.

The Markov model induces an exploration tree: Each node has as
children all the possible program portions and is connected to them
through arcs with cost —logp(zchiid|Zparent). Each node corresponds to
a program, and its description length can be obtained by adding the
weights of the arcs on the path from the root. A best-first traversal of
the tree (always expanding the nodes that have less accumulated cost
from the root) visits the programs in order of decreasing probability.
Each visited compressed program z can be expanded into its atomic
version x and run on the VCC, checking whether the produced outputs
match the provided ones. We stop the process after we find a valid
program (the concept is discovered) or the number of visited nodes ex-
ceeds some effort parameter M.

To alleviate the memory demands of best-first search, we use
iterative deepening where depth-first search (DFS) is run with a limit
on the description length, the limit is gradually increased, and the
process is repeated. The nodes (programs) visited on each iteration that
were not visited in the previous iteration are then run on the VCC. This
visits the nodes in approximately a best-first order: Within each search
bracket, the node ordering is arbitrary, but the brackets are ordered. The
smaller the brackets, the tighter the approximation to best-first search.
VCC states are cached during the DFS traversal to prevent redundant
instruction executions, and the successors of any node that produced an
“invalid” execution on VCC are pruned away from further search.

Because the number of explored programs is relatively low, we first
run a best-first search that identifies the maximum description length of
the shortest M programs (without running them), and then, we run
DFS using the identified description length as the cutoff. During the
DFS, we run the programs, taking advantage of the optimizations de-
scribed in the previous paragraph. The DFS is run until completion even
if the sought-for concept is found earlier, because it does not guarantee
that the shortest description of the concept will be found first.

Argument prediction

The differences and similarities between the input and output images
that are used as examples for each concept provide information about
what to pay attention to. We use this information to predict the argu-
ment for the following three functions: set _shape attn,set
color attn,and £ill color. Given that the argument of
each function can take several potential values and each function

12 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

can appear multiple times in a program with its argument taking a
different value, this becomes a multilabel problem. We build a logis-
tic regression model for each function and argument pair.

To get training data for argument prediction, we enumerate all valid
programs up to length 6 (including scene parse), where valid
programs are those that can be executed on input images without
any failure. From the set of valid programs, we filter out uninformative
programs whose output images are the same as the corresponding
input. We also remove programs where the presence of an instruction
with its assigned argument does not lead to different output compared
with the program without that instruction.

For each program, we generate 10 examples. Each example is
converted to a 3D binary array A with shape (21, 15, 15), where 21 is
the number of input channels and 15 corresponds to the height and
width of the discretized images. The first 10 channels are based on
the input images, as shown in the first column of fig. S2. Each element
is set to 1 or 0, depending on whether the feature associated with that
channel is present at that location or not, respectively. The next 10 chan-
nels are based on the difference between input and output images, both
using the same binary encoding, which results in the elements of these
channels having -1, 0, and 1 as possible values. This is shown in the
third column of fig. S2. The difference between output and input high-
lights what has changed between both images. For example, when the
green color disappears, a —1 value is registered in the third column at the
corresponding location and for the green color channel. In contrast,
the blue square remains in the same position; thus, it becomes zero
when we subtract the input from the output. The last channel sum-
marizes the differences across the 10 previous features (channels). Thus,
an element corresponding to row r and column ¢ of channel 21 is com-
puted asAyy,c = Z}OZH |Afrc| = 1. Thatis,a value of 1 at a given position
means that the object at that position has changed regardless of whether
it was added or removed. This feature combines color change and
movement change into one single indicator.

We use a convolutional neural network (CNN) to capture spatial
invariance, because the object experiencing a change can be anywhere
in an image. Figure S3 shows the architecture of the model. To capture
the similarities among examples, we sum the max pooling results from
all examples and feed it into a sigmoid function. Given that the last
layer is simply performing a summation, we only need to train the
convolutional weights of the CNN. The model is trained using the
ADAM optimizer and L1 regularization with a weight of 0.01. There
are other two functions with arguments that are not supported by this
model and for which we do not perform predictions: One of them is
fixate location and the other oneis imagine shape.

We also use the result of argument prediction to predict the exis-
tence of an instruction in a concept. Specifically, if, for a given
instruction, the sum of probabilities of all the values that its argument
can take is below 0.55, then it is assumed that the instruction is not pres-
ent in the concept and excluded from the search process.

Execution on robots

We tested the transfer of induced concepts to real world by executing
programs on two different robots in different settings: a Baxter robot
from Rethink Robotics and a UR5 from Universal Robots. To execute
the programs on these robots, we extended VCC with an additional ro-
bot interface that implemented input scene capture and hand actions.
Scene capture was achieved through a camera attached to the respective
robot’s end effector, a gripper. A color image with red, green, and blue
channels of the scene was captured by this camera and passed on to the

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

scene parser of the emulator, which created the VCC’s initial state.
Moving a hand to any location within the workspace and grasping and
releasing objects were implemented on robot using a simple Cartesian
controller that moved the hand to a given x, y position on a table in a
plane at a specified height above the table top. Grasping and releasing
an object involved moving the gripper down and closing and opening
the gripper. Instead of dragging the object along the table, we moved
the object slightly above the table but otherwise respected the same
collision constraints as our TW, including the boundary. The interface
also mapped any position in VCC’s workspace onto x, y coordinates in
the robot frame of reference. Program execution took place in the
VCC and called scene capture and hand action functions implemented
in the robot interface when available. Executing any specific program
involved giving the induced concept as a list of primitives with argu-
ments when available and running VCC with robot interface. We used
the same visual scene parser for execution on robots as we did for the
VCC. We tested six different concepts, including a complex concept
that involved executing two concepts in sequence. We used colored
foam blocks of different shapes, fruits, and household items as objects
and executed programs under different variations of background,
number, and shapes and types of objects and with or without dis-
tractor objects.

Mapping locations from VCC workspace to robot reference frame
requires accurate calibration of camera pose with respect to the robot,
and moving robot arm to a specific location requires accurate execution
of arm movement. Our UR5 robot had an external RealSense camera
attached to the gripper with an accurate calibration. For Baxter, an in-
built camera inside the gripper was used instead for scene capture. This
camera has low resolution and some burnout pixels with an approximate
calibration. Because of these limitations, executions were typically accu-
rate and more successful on UR5 compared with Baxter. Movement ex-
ecution was also faster on UR5 compared with Baxter. Failed runs of
program execution were primarily due to grasp failures. These happened
more frequently on Baxter, so we tested most of the variations on UR5,
which has better movement accuracy.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaav3150/DC1

Text

Fig. S1. Schematic showing local bounded working memory mappings in VCC for an example
program.

Fig. S2. Features extracted from example images used for argument prediction.

Fig. S3. Argument prediction network architecture.

Fig. S4. Examples of valid test input images for three different concepts.

Table S1. List of primitive functions.

Movie S1. The concept of moving yellow objects toward the left and green objects toward the
right is taught through schematic images and transferred for execution on robot to separate
lemons from limes.

Movie S2. A robot executing the concept of arranging objects in a circle under various
settings.

Movie S3. Robots executing the concept of stacking objects on the bottom left in a variety of
settings.

Movie S4. Robots executing the concept of moving the yellow object to the bottom left corner
and the green object to the top right corner in a variety of settings.

Movie S5. Robots executing the concept of stacking objects vertically in place in a variety of settings.

REFERENCES AND NOTES
1. B. Akgun, M. Cakmak, K. Jiang, A. L. Thomaz, Keyframe-based learning from
demonstration. Int. J. Soc. Robot. 4, 343-355 (2012).
2. Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel,
W. Zaremba, One-shot imitation learning, in Advances in Neural Information
Processing Systems (NIPS, 2017), pp. 1087-1098.

13 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://robotics.sciencemag.org/cgi/content/full/4/26/eaav3150/DC1
http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

3.

14.
15.
16.

18.
19.

20.
21.
22.
23.

24.

25.

26.

27.

28.
29.
30.

31

32
33.

34.

35.

36.

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019)

D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, J. C. Niebles, Neural task
graphs: Generalizing to unseen tasks from a single video demonstration.
arXiv:1807.03480 [cs.CV] (10 July 2018).

. C.Finn, T. Yu, T. Zhang, P. Abbeel, S. Levine, One-shot visual imitation learning via

meta-learning. arXiv:1709.04905 [cs.LG] (14 September 2017).

. H-Y. F. Tung, A. W. Harley, L-K. Huang, K. Fragkiadaki, Reward learning from narrated

demonstrations. arXiv:1804.10692 [cs.CV] (27 April 2018).

. L. W. Barsalou, Perceptual symbol systems. Behav. Brain Sci. 22, 577-609 (1999).
. J. M. Mandler, How to build a baby: Il. Conceptual primitives. Psychol. Rev. 99, 587-604 (1992).
. A. Cangelosi, A. Greco, S. Harnad, Simulating the Evolution of Language (Springer, 2002),

pp. 191-210.

. S. Harnad, The symbol grounding problem. Physica D 42, 335-346 (1990).
.M. Amalric, L. Wang, P. Pica, S. Figueira, M. Sigman, S. Dehaene, The language of

geometry: Fast comprehension of geometrical primitives and rules in human adults and
preschoolers. PLOS Comput. Biol. 13, 1005273 (2017).

. J. K. Tsotsos, W. Kruijne, Cognitive programs: Software for attention’s executive.

Front. Psychol. 5, 1260 (2014).

. A. M. Turing, On computable numbers, with an application to the entscheidungsproblem.

Proc. Lond. Math. Soc. s2-42, 230-265 (1937).

. A. Zylberberg, S. Dehaene, P. R. Roelfsema, M. Sigman, The human turing machine:

A neural framework for mental programs. Trends Cogn. Sci. 15, 293-300 (2011).

J. Von Neumann, The Computer and the Brain (Yale Univ. Press, 2012).

P. R. Roelfsema, Elemental operations in vision. Trends Cogn. Sci. 9, 226-233 (2005).

1. Yildirim, R. A. Jacobs, Learning multisensory representations for auditory-visual transfer
of sequence category knowledge: A probabilistic language of thought approach.
Psychon. Bull. Rev. 22, 673-686 (2015).

. M. C. Overlan, R. A. Jacobs, S. T. Piantadosi, Learning abstract visual concepts via probabilistic

program induction in a language of thought. Cognition 168, 320-334 (2017).

S. Ullman, High-level Vision: Object Recognition and Visual Cognition (MIT Press, 1996), vol. 2.
J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, R. Girshick,
Inferring and Executing Programs for Visual Reasoning (ICCV, 2017), pp. 3008-3017.

J. M. Mandler, C. P. Canovas, On defining image schemas. Lang. Cogn. 6, 510-532
(2014).

D. H. Ballard, M. M. Hayhoe, P. K. Pook, R. P. Rao, Deictic codes for the embodiment of
cognition. Behav. Brain Sci. 20, 723-742 (1997).

P. R. Roelfsema, F. P. de Lange, Early visual cortex as a multiscale cognitive blackboard.
Annu. Rev. Vis. Sci. 2, 131-151 (2016).

G. Lakoff, R. E. NUfez, Where mathematics comes from: How the embodied mind brings
mathematics into being. AMC 10, 12 (2000).

D. George, W. Lehrach, K. Kansky, M. Lazaro-Gredilla, C. Laan, B. Marthi, X. Lou, Z. Meng,
Y. Liu, H. Wang, A. Lavin, D. S. Phoenix, A generative vision model that trains with high
data efficiency and breaks text-based CAPTCHAs. Science 358, eaag2612 (2017).

K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lazaro-Gredilla, X. Lou, N. Dorfman, S. Sidor,
S. Phoenix, D. George, Schema networks: Zero-shot transfer with a generative causal
model of intuitive physics, in International Conference on Machine Learning (ICML, 2017),
pp. 1809-1818.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, Building machines that learn
and think like people, in Behavioral and Brain Sciences (2016), pp. 1-101.

S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, B. Zorn,
Inductive programming meets the real world, in Communications of the ACM (Association
for Computing Machinery, 2015), vol. 58, pp. 90-99.

M. Tomasello, Acquiring linguistic constructions, in Child and Adolescent Development
(2008), p. 263.

J. C. Macbeth, D. Gromann, M. M. Hedblom, Image Schemas and Conceptual Dependency
Primitives: A Comparison. Technical Report.

D. P. Kingma, M. Welling, Auto-encoding variational Bayes. arXiv:1312.6114 [stat. ML]
(20 December 2013).

S. Gulwani, Dimensions in program synthesis, in Proceedings of the 12th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’10)
(ACM, 2010), pp. 13-24.

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, D. Tarlow, DeepCoder: Learning to
write programs. arXiv:1611.01989 [cs.LG] (7 November 2016).

X. Chen, C. Liu, D. Song, Towards synthesizing complex programs from input-output
examples. arXiv:1706.01284 [cs.LG] (5 June 2017).

E. Dechter, J. Malmaud, R. P. Adams, J. B. Tenenbaum, Bootstrap learning via modular
concept discovery, in Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI) (IJCAI, 2013), pp. 1302-1309.

A. Graves, G. Wayne, |. Danihelka, Neural turing machines. arXiv:1410.5401 [cs.NE]

(10 December 2014).

D. Lin, E. Dechter, K. Ellis, J. Tenenbaum, S. Muggleton, Bias reformulation for one-shot
function induction, in Proceedings of the 23rd European Conference on Artificial Intelligence
(IOS Press, 2014), pp. 525-530.

16 January 2019

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.
61.

62.

63.
64.

65.

66.

67.

68.

K. Ellis, L. Morales, M. S. Meyer, A. Solar-Lezama, J. B. Tenenbaum, Dreamcoder:
Bootstrapping domain-specific languages for neurally-guided bayesian program
learning, in Neural Abstract Machines and Program Induction Workshop at NIPS 2018
(NIPS, 2018).

B. M. Lake, R. Salakhutdinov, J. B. Tnenbaum, Human-level concept learning through
probabilistic program induction. Science 350, 1332-1338 (2015).

We also tested the effect of increasing the search budget. When increasing it to

3 million programs, 41 concepts are discovered without subroutines and an additional
61 when using subroutines. The effect of subroutines in concept discovery is much
more marked in the case of the order-0 model because subroutines are the only
mechanism that makes memory available to the model.

D. Whitney, E. Rosen, E. Phillips, G. Konidaris, S. Tellex, Comparing robot grasping
teleoperation across desktop and virtual reality with ROS reality, in International
Symposium on Robotics Research (Springer International, 2017), pp. 1-16.

Y. Wu, Y. Demiris, Towards one shot learning by imitation for humanoid robots, in
2010 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2010),

pp. 2889-2894.

D. Hofstadter, M. Mitchell, The Copycat Project: A model of mental fluidity and analogy-
making, in Advances in Connectionist and Neural Computation Theory, K. J. Holyoak,

J. A. Barnden, Eds. (Ablex, 1995).

R. M. French, D. Hofstadter, Tabletop: An emergent, stochastic model of analogy-making,
in Proceedings of the 13th Annual Conference of the Cognitive Science Society

(Lawrence Erlbaum Associates, 1991), pp. 175-182.

Y. Ganin, T. Kulkarni, I. Babuschkin, S. M. A. Eslami, O. Vinyals, Synthesizing Programs
for Images using Reinforced Adversarial Learning. arXiv:1804.01118 [cs.CV]

(3 April 2018).

J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, S. Birchfield, Synthetically trained
neural networks for learning human-readable plans from real-world demonstrations.
arXiv:1805.07054 [cs.RO] (10 July 2018).

M. P. Johnson, P. Maes, T. Darrell, Evolving visual routines. Artif. Life 1, 373-389 (1994).
A. K. McCallum, Learning visual routines with reinforcement learning, in AAAI Fall
Symposium 1996 (Massachusetts Institute of Technology, 1996), pp. 82-86.

1. Horswill, Visual routines and visual search: A real-time implementation and an
automata-theoretic analysis, in International Joint Conference on Artificial Intelligence
(Citeseer, 1995), pp. 56-63.

S. Rao, Visual routines and attention, thesis, Massachusetts Institute of Technology
(1998).

G. Salgian, D. H. Ballard, Visual routines for autonomous driving, International Conference
on Computer Vision (1998), pp. 876-882.

G. Pezzulo, G. Calvi, Toward a perceptual symbol system, in Proceedings of the Sixth
International Conference on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems. Lund University Cognitive Science Studies, vol. 118.

1. Kotseruba, J. K. Tsotsos, STAR-RT: Visual attention for real-time video game playing.
arXiv:1711.09464 [cs.CV] (26 November 2017).

R. A. Andersen, C. A. Buneo, Sensorimotor integration in posterior parietal cortex.

Adv. Neurol. 93, 159-177 (2003).

A. Newell, SOAR: A Cognitive Architecture in Perspective (Springer, 1992), pp. 25-79.

J. M. Lawler, Metaphors we live by. Language 59, 201-207 (1983).

O. Kolodny, S. Edelman, The evolution of the capacity for language: The ecological
context and adaptive value of a process of cognitive hijacking. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 373, 20170052 (2018).

N. D. Goodman, J. B. Tenenbaum, T. Gerstenberg, “Concepts in a probabilistic language of
thought,” (Technical Report 010, Center for Brains, Minds and Machines, 2014).

Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436-444 (2015).

J. Schmidhuber, Deep learning in neural networks: An overview. Neural Netw. 61, 85-117
(2015).

G. Marcus, Deep learning: A critical appraisal. arXiv:1801.00631 [cs.Al] (2 January 2018).
G. Marcus, A. Marblestone, T. Dean, The atoms of neural computation. Science 346,
551-552 (2014).

D. L. K. Yamins, J. J. DiCarlo, Using goal-driven deep learning models to understand
sensory cortex. Nat. Neurosci. 19, 356-365 (2016).

J. K. Tsotsos, A Computational Perspective on Visual Attention (MIT Press, 2011).

A. Rosenfeld, J. K. Tsotsos, Bridging cognitive programs and machine learning. arXiv:1802.
06091 [cs.LG] (16 February 2018).

C. von der Malsburg, The what and why of binding: The modeler’s perspective.

Neuron 24, 95-104 (1999).

J. C. Raven, Raven’s Progressive Matrices (Western Psychological Services, 1938).

I. Higgins, N. Sonnerat, L. Matthey, A. Pal, C. P. Burgess, M. Bosnjak, M. Shanahan,

M. Botvinick, D. Hassabis, A. Lerchner, Scan: Learning hierarchical compositional visual
concepts. arXiv:1707.03389 (2017).

S. H. Muggleton, D. Lin, A. Tamaddoni-Nezhad, Meta-interpretive learning of higher-order
dyadic datalog: Predicate invention revisited. Mach. Learn. 100, 49-73 (2015).

14 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

https://arxiv.org/abs/1807.03480
https://arxiv.org/abs/1709.04905
https://arxiv.org/abs/1804.10692
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1706.01284
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1804.01118
https://arxiv.org/abs/1805.07054
https://arxiv.org/abs/1711.09464
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1802.06091
https://arxiv.org/abs/1802.06091
https://arxiv.org/abs/1707.03389
http://robotics.sciencemag.org/

SCIENCE ROBOTICS | RESEARCH ARTICLE

69. N. Hay, M. Stark, A. Schlegel, C. Wendelken, D. Park, E. Purdy, T. Silver, D. S. Phoenix,
D. George, Behavior is everything: Towards representing concepts with sensorimotor
contingencies, in AAAI Conference on Artificial Intelligence (AAAI Press, 2018).

70. The starting probabilities are now expressed as transitioning probabilities from e. Also,
note that, because we know X; = e deterministically, logp(X;) = 0, and therefore, it no
longer appears in the expression.

Acknowledgments: We thank the anonymous reviewers for their insightful comments

that helped to improve the paper. We thank C. Wendelken, N. Hay, and D. S. Phoenix for
reviewing the manuscripts. We thank the Vicarious RCN team for the RCN implementation we
used and the Vicarious robotics team for the robot interfaces. Funding: This research was
funded by Vicarious Al. Author contributions: D.G. conceived of the model, implemented
the VCC, and designed the experiments. M.L.-G., D.G., and D.L. designed and implemented the
program induction algorithms. D.L. and D.G. generated the datasets. D.L. implemented

the neural nets, ran the program induction experiments, and generated the plots. J.S.G.
implemented the robot interfaces, performed the robot experiments, and generated the

Lazaro-Gredilla et al., Sci. Robot. 4, eaav3150 (2019) 16 January 2019

videos. D.G,, J.S.G., and D.L. generated the figures. D.G. and M.L-G. wrote the paper

with the assistance of D.L. and J.S.G. Competing interests: Vicarious Al has filed a U.S.
Patent Office application (number 62/727,162) related to this work. The authors declare that
they have no competing financial interests. Data and materials availability: Program
induction code and datasets used in the experiments will be made available at
www.vicarious.com. All other data needed to evaluate the conclusions in the paper

are present in the paper and/or the Supplementary Materials.

Submitted 5 September 2018
Accepted 19 November 2018
Published 16 January 2019
10.1126/scirobotics.aav3150

Citation: M. Lazaro-Gredilla, D. Lin, J. S. Guntupalli, D. George, Beyond imitation: Zero-shot task
transfer on robots by learning concepts as cognitive programs. Sci. Robot. 4, eaav3150 (2019).

15 of 15

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

http://www.vicarious.com
http://robotics.sciencemag.org/

Science Robotics

Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive
programs

Miguel Lazaro-Gredilla, Dianhuan Lin, J. Swaroop Guntupalli and Dileep George

Sci. Robotics 4, eaav3150.
DOI: 10.1126/scirobotics.aav3150

ARTICLE TOOLS http://robotics.sciencemag.org/content/4/26/eaav3150
,\SA%FE’@\V'LESNTARY http://robotics.sciencemag.org/content/suppl/2019/01/14/4.26.eaav3150.DC1
REFERENCES This article cites 27 articles, 2 of which you can access for free

http://robotics.sciencemag.org/content/4/26/eaav3150#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

6T0Z ‘9T Arenuer uo 1sanb Aq /610 Bewadualds sonogol//:dny woly papeojumoq

Science Robotics (ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200
New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science. No claim to original U.S. Government Works. The title
Science Robotics is a registered trademark of AAAS.

http://robotics.sciencemag.org/content/4/26/eaav3150
http://robotics.sciencemag.org/content/suppl/2019/01/14/4.26.eaav3150.DC1
http://robotics.sciencemag.org/content/4/26/eaav3150#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://robotics.sciencemag.org/

