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Abstract
The recent adaptation of deep neural network-
based methods to reinforcement learning and
planning domains has yielded remarkable
progress on individual tasks. Nonetheless,
progress on task-to-task transfer remains limited.
In pursuit of efficient and robust generalization,
we introduce the Schema Network, an object-
oriented generative physics simulator capable
of disentangling multiple causes of events and
reasoning backward through causes to achieve
goals. The richly structured architecture of the
Schema Network can learn the dynamics of an
environment directly from data. We compare
Schema Networks with Asynchronous Advan-
tage Actor-Critic and Progressive Networks on a
suite of Breakout variations, reporting results on
training efficiency and zero-shot generalization,
consistently demonstrating faster, more robust
learning and better transfer. We argue that
generalizing from limited data and learning
causal relationships are essential abilities on the
path toward generally intelligent systems.

1. Introduction
A longstanding ambition of research in artificial intelli-
gence is to efficiently generalize experience in one scenario
to other similar scenarios. Such generalization is essential
for an embodied agent working to accomplish a variety of
goals in a changing world. Despite remarkable progress on
individual tasks like Atari 2600 games (Mnih et al., 2015;
Van Hasselt et al., 2016; Mnih et al., 2016) and Go (Silver
et al., 2016), the ability of state-of-the-art models to trans-
fer learning from one environment to the next remains lim-
ited. For instance, consider the variations of Breakout illus-
trated in Fig. 1. In these environments the positions of ob-
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Figure 1. Variations of Breakout. From top left: standard version,
middle wall, half negative bricks, offset paddle, random target,
and juggling. After training on the standard version, Schema Net-
works are able to generalize to the other variations without any
additional training.

jects are perturbed, but the object movements and sources
of reward remain the same. While humans have no trouble
generalizing experience on the basic Breakout to its varia-
tions, deep neural network-based models are easily fooled
(Taylor & Stone, 2009; Rusu et al., 2016).

The model-free approach of deep reinforcement learning
(Deep RL) such as the Deep-Q Network and its descen-
dants is inherently hindered by the same feature that makes
it desirable for single-scenario tasks: it makes no assump-
tions about the structure of the domain. Recent work has
suggested how to overcome this deficiency by utilizing
object-based representations (Diuk et al., 2008; Usunier
et al., 2016). Such a representation is motivated by the
well-acknowledged Gestalt principle, which states that the
ability to perceive objects as a bounded figure in front of
an unbounded background is fundamental to all perception
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(Weiten, 2012). Battaglia et al. (2016) and Chang et al.
(2016) go further, defining hardcoded relations between
objects as part of the input.

While object-based and relational representations have
shown great promise alone, they stop short of modeling
causality – the ability to reason about previous observations
and explain away alternative causes. A causal model is es-
sential for regression planning, in which an agent works
backward from a desired future state to produce a plan
(Anderson, 1990). Reasoning backward and allowing for
multiple causation requires a framework like Probabilis-
tic Graphical Models (PGMs), which natively supports ex-
plaining away (Koller & Friedman, 2009).

Here, we introduce Schema Networks – a generative model
for object-oriented reinforcement learning and planning.
Schema networks incorporate key desiderata for the flex-
ible and compositional transfer of learned prior knowl-
edge to new settings1. 1) Knowledge is represented using
“schemas” – causal graphical model fragments involving
entities, their attributes, and learnable interactions among
entities; 2) In a new setting, the appropriate knowledge
fragments are automatically instantiated to guide action se-
lection; and 3) The representation deals with uncertainty,
multiple-causation and explaining away, and stochastic-
ity in a principled way. We describe the representational
framework and learning algorithms and demonstrate how
action policies can be generated by treating planning as
inference. We evaluate the end-to-end system on Break-
out variations and compare against Asynchronous Advan-
tage Actor-Critic (A3C) (Mnih et al., 2016) and Progressive
Networks (PNs) (Rusu et al., 2016), the latter of which ex-
tends A3C explicitly to handle transfer. We show that the
rich structure of the Schema Network enables efficient and
robust generalization beyond the Deep RL models.

2. Related Work
The field of reinforcement learning has witnessed signifi-
cant progress with the recent adaptation of deep learning
methods to traditional frameworks like Q-learning. Since
the introduction of the Deep Q-network (DQN) (Mnih
et al., 2015), which uses experience replay to achieve
human-level performance on a set of Atari 2600 games,
several innovations have enabled faster convergence and
better performance with less memory. The asynchronous
methods introduced by Mnih et al. (2016) exploit multi-
ple agents acting in copies of the same environment, com-
bining their experiences into one model. As the Asyn-
chronous Advantage Actor-Critic (A3C) is the best among
these methods, we use it as our primary point of compari-

1We borrow the term “schema” from Drescher (1991), whose
schema mechanism inspired the early development of our model.

son.

Model-free deep RL models like A3C are unable to
substantially generalize beyond their training experience
(Jaderberg et al., 2016; Rusu et al., 2016). To address this
limitation, recent work has attempted to introduce more
structure into the neural network-based models. The In-
teraction Network (Battaglia et al., 2016) and the Neural
Physics Engine (Chang et al., 2016) use object-level and
pairwise relational representations to learn models of intu-
itive physics. The primary advantage of these models is
their amenability to gradient-based methods, though such
techniques might be applied to Schema Networks as well.
Schema Networks offer two key advantages: latent phys-
ical properties and relations (schemas) need not be hard-
coded; and planning can make use of backward search,
since the model can distinguish different causes.

Schema Networks build upon the ideas of the Object-
Oriented Markov Decision Process (OO-MDP) introduced
by Diuk et al. (2008) (see also (Scholz et al., 2014)). Re-
lated frameworks include relational and first-order logical
MDPs (Guestrin et al., 2003a). These various formalisms,
which harken back to classical AI’s roots in symbolic rea-
soning, are designed to enable robust generalization. Re-
cent work by Garnelo et al. (2016) on “deep symbolic re-
inforcement learning” makes this connection explicit, mar-
rying first-order logic with deep RL. This effort is similar
in spirit to our work with Schema Networks, but like In-
teraction Networks and Neural Physic Engines, it remains
limited without a mechanism for backward planning (also
referred to as regression planning).

Generalization is the ability to transfer experience from one
scenario to other similar scenarios, or, ideally, dissimilar
scenarios that exhibit repeatable structure and sub-structure
(Taylor & Stone, 2009). Schema networks achieve this by
building an inductive model of the world after observing
a limited and biased sample of it. It is also possible to
attempt task-to-task transfer by directly using the learned
model from one task to begin learning another, without at-
tempting to generalize. This strategy is taken by Rusu et al.
(2016) in their work on Progressive Networks (PNs). A
PN is constructed by successively training copies of A3C
on each task of interest. With each new task, the existing
network is frozen, another copy of A3C is added, and lat-
eral connections between the frozen network and the new
copy are established to facilitate transfer of features learned
during previous tasks. The obvious limitation of PNs is that
the number of network parameters must grow quadratically
with the number of tasks. However, even if this growth rate
was improved, the PN would still be unable to generalize
in the manner of Schema Networks to create one coherent
model of all experiences.

Schema Networks are built on the technical foundations
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Figure 2. Construction and architecture of a Schema Network.
A schema is a template for a factor that predicts future reward
(A) or the value of an entity-attribute (B) based on entity states
and actions taken in the present. Self-transitions (C) predict the
value of entity-attributes in the absence of other factors. Self-
transitions allow continuous or categorical variables to be repre-
sented by a set of binary variables (depicted as smaller nodes).
The grounded schema factors and self-transitions are combined
to create a Schema Network (D), which gives a generative model
of the MDP transition and reward distributions.

of probabilistic graphical models (PGMs), which provide
not only an expressive and powerful modeling language,
but also a rich toolbox of inference techniques, including
the ability to learn the structure of models. More impor-
tantly, reasoning with uncertainty and explaining away are
naturally supported by PGMs. We direct the readers to
(Koller & Friedman, 2009) and (Jordan, 1998) for a thor-
ough overview of PGMs. In particular, early work on fac-
tored MDPs established how PGMs can be applied in RL
and planning settings (Guestrin et al., 2003b).

3. Schema Networks
3.1. MDPs and Notation

The traditional formalism for the Reinforcement Learning
problem is the Markov Decision Process (MDP). An MDP
M is a five-tuple (S,A, T,R, γ), where S is a set of states,
A is a set of actions, T (s(t+1)|s(t), a(t)) is the probabil-
ity of transitioning from state s(t) ∈ S to s(t+1) ∈ S af-
ter action a(t) ∈ A, R(r(t+1)|s(t), a(t)) is the probability
of receiving reward r(t+1) ∈ R after executing action a(t)

while in state s(t), and γ ∈ [0, 1] is the rate at which future
rewards are exponentially discounted.

3.2. Model Definition

A Schema Network is a structured generative model of an
MDP. We first describe the architecture of the model infor-
mally. An image input is parsed into a list of entities, which
may be thought of as instances of objects in the sense of
OO-MDPs (Diuk et al., 2008). All entities share the same
collection of attributes. We refer to a specific attribute of
a specific entity as an entity-attribute, which is represented
as a binary variable to indicate the presence of that attribute
for an entity. An entity state is an assignment of states to
all attributes of the entity, and the complete model state is
the set of all entity states.

A grounded schema is a binary variable associated with a
particular entity-attribute in the next timestep, conditioned
on the present values of other entity-attributes. Each entity-
attribute that conditions the distribution is associated with
0 or 1, and the event that the entity-attribute assumes this
value is called a precondition of the grounded schema.
When the preconditions of a grounded schema are satisfied,
we say that the schema is active, and it predicts the activa-
tion of its associated entity-attribute. Grounded schemas
may also predict rewards and may be conditioned on ac-
tions, both of which are represented as binary variables.
For instance, a grounded schema might define a distribu-
tion over Entity 1’s “position” attribute at time 5, condi-
tioned on Entity 2’s “position” attribute at time 4 and the
action “UP” at time 4. Grounded schemas are instantiated
from ungrounded schemas, which behave like templates for
grounded schemas to be instantiated at different times and
in different combinations of entities. For example, an un-
grounded schema could predict the “position” attribute of
Entity x at time t+1 conditioned on the “position” of Entity
y at time t and the action “UP” at time t; this ungrounded
schema could be instantiated at time t = 4 with x = 1 and
y = 2 to create the grounded schema described above. In
the case of attributes like “position” that are inherently con-
tinuous or categorical, several binary variables may be used
to discretely approximate the distribution (see the smaller
nodes in Figure 2). A Schema Network is a factor graph
that corresponds to the instantiation of a set of ungrounded
schemas for a particular set of entities over some window
of time. See Figure 2 for a high-level illustration of the
Schema Network architecture.

We now formalize the Schema Network factor graph. For
simplicity, suppose the number of entities and the num-
ber of attributes are fixed at N and M respectively. Let
Ei refer to the ith entity and let α(t)

i,j refer to the jth at-
tribute of the ith entity at time t. We use the notation
E

(t)
i = (α

(t)
i,1, ..., α

(t)
i,M ) to refer to the state of the ith en-

tity at time t. The complete state of the MDP modeled by
the network at time t is then s(t) = (E

(t)
1 , ..., E

(t)
N ). Ac-

tions and rewards are also represented with sets of binary
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variables, denoted a(t) and r(t+1) respectively. A Schema
Network for time t will contain the variables in s(t), a(t),
s(t+1), and r(t+1).

Let φk denote the variable for grounded schema k. φk

is bound to a specific entity-attribute αi,j , and acti-
vates it when the schema is active. Multiple grounded
schemas can try to predict the same attribute, and those
are combined through an OR gate. For binary vari-
ables v1, ..., vn, let AND(v1, ..., vn) =

∏n
i=1 P (vi =

1), and OR(v1, ..., vn) = 1 −
∏n

i=1(1 − P (vi =
1)). A grounded schema is connected to its precondi-
tion entity-attributes with an AND factor, written as φk =
AND(αi1,j1 , ..., αiH ,jH , a) forH entity-attribute precondi-
tions and an optional action a. There is no restriction on
how many entities or attributes from a single entity can be
preconditions of a grounded schema.

An ungrounded schema (or template) is represented
as Φl(Ex1

, ..., ExH
) = AND(αx1,y1

, αx1,y2
..., αxH ,yH

),
where xh determines the relative entity index of the h-th
precondition and yh determines which attribute variable is
the precondition. The ungrounded schema is a template
that can be bound to multiple specific entities and locations,
thus generating grounded schemas.

A subset of attributes corresponds to discrete positions.
These attributes are treated differently from all others,
whose semantic meanings are unknown to the model.
When a schema predicts a movement to a new position,
we must inform the previously active position attribute to
be inactive unless there is another schema that predicts it
to remain active. We introduce a self-transition variable to
represent the probability that a position attribute will re-
main active in the next time step when no schema predicts
a change from that position. We compute the self-transition
variable as Λi,j = AND(¬φ1, ...,¬φk, si,j) for entity i
and position attribute j, where the set φ1...φk includes all
schemas that predict the future position of the same entity
i and include si,j as a precondition.

With these terms defined, we may now compute
the transition function, which can be factorized as
T (s(t+1)|s(t), a(t)) =

∏N
i=1

∏M
j=1 Ti,j(s

(t+1)
i,j |s(t), a(t)).

An entity-attribute is active at the next time step if either
a schema predicts it to be active or if its self-transition vari-
able is active:

Ti,j(s
(t+1)
i,j |s(t)) = OR(φk1 , ..., φkQ ,Λi,j) (1)

Where k1...kQ are the indices of all grounded schemas that
predict si,j .

3.3. Construction of Entities and Attributes

In practice we assume that a vision system is responsi-
ble for detecting and tracking entities in an image. It is
therefore largely up to the vision system to determine what
constitutes an entity. Essentially any trackable image fea-
ture could be an entity, which most typically includes ob-
jects, their boundaries, and their surfaces. Recent work has
demonstrated one possible method for unsupervised entity
construction using autoencoders (Garnelo et al., 2016). De-
pending on the task, Schema Networks could learn to rea-
son flexibly at different levels of representation. For ex-
ample, using entities from surfaces might be most relevant
for predicting collisions, while using one entity per object
might be most relevant for predicting whether it can be con-
trolled by an action. The experiments in this paper utilize
surface entities, described further in Section 5.

Similarly, entity attributes can be provided by the
vision system, and these attributes typically include:
color/appearance, surface/edge orientation, object cate-
gory, or part-of an object category (e.g. front-left tire).
For simplicity we here restrict the entities to have fully ob-
servable attributes, but in general they could have latent at-
tributes such as “bounciness” or “magnetism”.

3.4. Connections to Existing Models

Schema Networks are closely related to Object-Oriented
MDPs (OO-MDPs) (Diuk et al., 2008) and Relational
MDPs (R-MDPs) (Guestrin et al., 2003a). However, nei-
ther OO-MDPs nor R-MDPs define a transition function
with an explicit OR of possible causes, and traditionally
transition functions have not been learned in these models.
In contrast, Schema Networks provide an explicit OR to
reason about multiple causation, which enables regression
planning. Additionally, the structure of Schema Networks
is amenable to efficient learning.

Schema Networks are also related to the recently proposed
Interaction Network (IN) (Battaglia et al., 2016) and Neural
Physics Engine (NPE) (Chang et al., 2016). At a high level,
INs, NPEs, and Schema Networks are much alike – objects
are to entities as relations are to schemas. However, nei-
ther INs nor NPEs are generative and hence do not support
regression planning from a goal through causal chains. Be-
cause Schema Networks are generative models, they sup-
port more flexible inference and search strategies for plan-
ning. Additionally, the learned structures in Schema Net-
works are amenable to human interpretation, explicitly fac-
torizing different causes, making prediction errors easier to
relate to the learned model parameters.
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4. Learning and Planning in Schema
Networks

In this section we describe how to train Schema Networks
(i.e., learn its structure) from interactions with an environ-
ment, as well as how they can be used to perform planning.
Planning is needed not only at test time to maximize re-
ward, but also to improve exploration during the training
procedure.

4.1. Training Procedure

Given a series of actions, rewards and images, we repre-
sent each possible action and reward with a binary variable,
and we convert each image into a set of entity states S.
The number of entities is allowed to vary between adjacent
frames, accounting for objects appearing or moving out of
view. For each entity we record the attributes of the entities
at each position within a local neighborhood. Empty posi-
tions in the neighborhood are represented by setting all its
attributes (other than position) to zero. This collection of
attributes can then be converted into a fixed-length binary
feature vector for a given neighborhood radius. This data
is aggregated across all frames and provided to the schema
learning algorithm described in Section 4.2.

While gathering data, actions are chosen by planning using
the schemas that have been learned so far. This planning
algorithm is described in Section 4.3. We use an ε-greedy
approach to encourage exploration, taking a random ac-
tion at each timestep with small probability. We found no
need to perform any additional policy learning, and after
convergence predictions were accurate enough to allow for
successful planning. As shown in Section 5, since learn-
ing only involves understanding the dynamics of the game,
transfer learning is simplified and there is no need for pol-
icy adaptation.

4.2. Schema learning

Structure learning in graphical models is a well studied
topic in machine learning (Koller & Friedman, 2009; Jor-
dan, 1998). To learn the structure of the Schema Network,
we cast the problem as a supervised learning problem over
a discrete space of parameterizations (the schemas), and
then apply a greedy algorithm that solves a sequence of LP
relaxations. See Jaakkola et al. (2010) for further work on
applying LP relaxations to structure learning.

Let us arrange the observed inputs to the Schema Network
as a binary matrix X ∈ {0, 1}N×D, with one observation
per row. Similarly, let binary vector y ∈ {0, 1}N represent
the observed binary outputs corresponding to the previous
inputs. Both X and y are collected during the environment
exploration. The output of the Schema Network is an esti-

mation of y and can be expressed as

ŷ = fW (X) = XW~1

where all the involved variables are binary and operations
follow Boolean logic: addition corresponds to ORing, and
overlining to negation. W ∈ {0, 1}D×M is a binary matrix,
with each column representing one (ungrounded) schema.
The variables set to 1 in each schema represent an exist-
ing connection between that schema and an input condition
(see Fig. 2). The outputs of each individual schema are
ORed to produce the final prediction.

We would like to minimize the prediction error of Schema
Networks while keeping them as simple as possible. A suit-
able objective function is

min
W∈{0,1}D×M

1

N
|y − fW (X)|1 + C|W |1, (2)

where the first term computes the prediction error, the sec-
ond term estimates the complexity and parameter C con-
trols the trade-off between both. This is an NP-hard prob-
lem for which we cannot hope to find an exact solution,
except for very small environments.

We consider a greedy solution in which linear program-
ming (LP) relaxations are used to find each new schema.
Starting from the empty set, we greedily add schemas
(columns to W ) that have perfect precision and increase
recall for the prediction of y (See Algorithm 1 in the
Supplementary). In each successive iteration, only the
input-output pairs for which the current schema network
is predicting an output of zero are passed. This procedure
monotonically decreases the prediction error of the overall
schema network, while increasing its complexity. The pro-
cess stops when we hit some predefined complexity limit.
In our implementation, the greedy schema selection pro-
duces very sparse schemas, and we simply set a limit to the
number of schemas to add. For this algorithm to work, no
contradictions can exist in the input data (such as the same
input appearing twice with different labels). Such con-
tradictions might appear in stochastic environments, and
would not be artifacts in real environments, so we prepro-
cess the input data to remove them.

4.3. Planning as Probabilistic Inference

The full Schema Network graph (Fig. 2) provides a proba-
bilistic model for the set of rewards that will be achieved by
a sequence of actions. Finding the sequence of actions that
will result in a given set of rewards becomes then a MAP
inference problem. This problem can be addressed approx-
imately using max-product belief propagation (MPBP) (At-
tias, 2003). Another option is variational inference. Cheng
et al. (2013) use variational inference for planning, but also
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end up resorting to MPBP to optimize the variational free
energy functional. We will follow the first approach.

Without lack of generality, we will consider the present
time step to be t = 0. The state, action and reward variables
for t ≤ 0 are observed, and we will consider inference over
the unobserved variables in a look-ahead window of size2

T , {s(t), a(t), r(t)}T−1t=0 . Since the Schema Network is built
exclusively of compatibility factors that can take values 0
or 1, any variable assignment is either impossible or equally
probable under the joint distribution of the graph. Thus, if
we want to know if there exists any global assignment that
activates a binary variable (say, variable r(t)(+) signaling pos-
itive reward at some future time t > 0), we should look at
the max-marginal p̃(r(t)(+) = 1). It will be 0 if no global
assignment compatible with both the SN and existing ob-
servations can lead to activate the reward, or 1 if it is fea-
sible. Similarly, we will be interested in the max-marginal
p̃(r

(t)
(−) = 0), i.e., whether it is feasible to find a configura-

tion that avoids a negative reward.

At a high-level, planning proceeds as follows: Identify fea-
sible desirable states (activating positive rewards and de-
activating negative rewards), clamp their value to our de-
sires by adding a unary potential to the factor graph, and
then find the MAP configuration of the resulting graph.
The MAP configuration contains the values of the action
variables that are required to reach our goal of activat-
ing/deactivating a variable. We can also look at S to see
how the model “imagines” the evolution of the entities un-
til they reach their goal state. Then we perform the actions
found by the planner and repeat. We now explain each of
these stages in more detail.

Potential feasibility analysis First we run a feasibility
analysis. To this end, a forward pass MPBP from time 0
to time T is performed. This provides a (coarse) approx-
imation to the desired max-marginals for every variable.
Because the SN graph is loopy, MPBP is not exact and the
forward pass can be too optimistic, announcing the feasi-
bility of states that are unfeasible3. Actual feasibility will
be verified later, at the backtracking stage.

Choosing a positive reward goal state We will choose
the potentially feasible positive reward that happens sooner
within our explored window, clamp its state to 1 and back-
track (see below) to find the set of actions that lead to it. If

2In contrast with MDPs, the reward is discounted with a
rolling square window instead of an exponentially weighted one.

3To illustrate the problem, consider the case in which it is fea-
sible for an entity to move at time t to position A or position B
(but obviously not both) and then some reward is conditioned on
that type of entity being in both positions: A single forward pass
will not handle the entanglement properly and will incorrectly re-
port that such reward is also feasible.

backtracking fails, we will repeat for the remaining poten-
tially feasible positive rewards.

Avoiding negative rewards Keeping the selected posi-
tive reward variable clamped to 1 (if it was found in the
previous step), we now repeat the same procedure on the
negative rewards. Among the negative rewards that have
been found as potentially feasible to turn off, we clamp to
zero as many negative rewards as we can find a jointly sat-
isfying backtrack. If no positive reward was feasible, we
backtrack from the earliest predicted negative reward.

Backtracking This step is akin to Viterbi backtracking,
a message passing backward pass that finds a satisfying
configuration. Unlike the HMM for which the Viterbi al-
gorithm was designed, our model is loopy, so a standard
backward pass is not enough to find a satisfying configura-
tion (although can help to find good candidates). We com-
bine the standard backward pass with a depth-first search
algorithm to find a satisfying configuration.

5. Experiments
We compared the performance of Schema Networks, A3C,
and PNs (Progressive Networks) on several variations of
the game Breakout. The chosen variations all share sim-
ilar dynamics, but the layouts change, requiring different
policies to achieve high scores. A diverse set of concepts
must be learned to correctly predict object movements and
rewards. For example, when predicting why rewards occur,
the model must disentangle possible causes to discover that
reward depends on the color of a brick but is independent
of the ball’s velocity and position where it was hit. While
these causal relationships are straightforward for humans
to recover, we have yet to see any existing approach for
learning a generative model that can recover all of these
dynamics without supervision or curriculum and transfer
them effectively.

Because Schema Networks rely on an input of entity states
instead of raw images, we attempted to provide the same
information to A3C and PNs by augmenting the three color
channels of the image with 34 additional channels. Four
of these channels indicated the shape to which each pixel
belongs, including shapes for bricks, balls, walls, and ob-
stacles. Another 30 channels indicated the positions of
parts of the paddle, where each part consisted of a single
pixel. To reduce training time, we did not provide A3C and
PN with part channels for objects other than the paddle,
since these are not required to learn the dynamics or predict
scores. However, Schema Networks were provided sepa-
rate entities for each part (pixel) of each object, and each
entity contained 78 attributes corresponding to the available
part labels (21 for bricks, 30 for the paddle, 25 for obsta-
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(a) Mini Breakout Learning Rate (b) Middle Wall Learning Rate

Figure 3. Comparison of learning rates. (a) Schema Networks and A3C were trained for 100k frames in Mini Breakout. (b) PNs and
Schema Networks were pretrained on 100K frames of Standard Breakout, and then training continued on 45K additional frames of the
Middle Wall variation. We show performance as a function of training frames for both models. Note that Schema Networks are ignoring
all the additional training data, since all the required schemas were learned during pretraining. For Schema Networks, zero-shot transfer
learning is happening.

Standard Breakout Offset Paddle Middle Wall Random Target Juggling
A3C Image Only N/A 0.60± 20.05 9.55± 17.44 6.83± 5.02 −39.35± 14.57
A3C Image + Entities N/A 11.10± 17.44 8.00± 14.61 6.88± 6.19 −17.52± 17.39
Schema Networks 36.33± 6.17 41.42± 6.29 35.22± 12.23 21.38± 5.02 −0.11± 0.34

Table 1. Zero-Shot Average Score per Episode Average of the 2 best out of 5 training attempts for A3C, and average of 5 training
attempts for Schema Networks. A3C was trained on 200k frames of Standard Breakout (hence its zero-shot scores for Standard Breakout
are unknown) while Schema Networks were trained on 100k frames of Mini Breakout. Episodes were limited to 2500 frames for all
variations. In every case the average Schema Network scores are better than the best A3C scores by more than one standard deviation.

cles, 1 for walls, and 1 for the ball). Only one of these part
attributes was active per entity. In this way, Schema Net-
works did not treat any object differently, and they were
forced to learn that some part attributes, like bricks or ob-
stacles, were irrelevant for predicting the ball’s movement.
We intentionally provided A3C and PN only with the rele-
vant part information (for the paddle) while ignoring irrel-
evant information (for other other objects), to give them a
strict advantage over the input to the Schema Networks.

5.1. Transfer Learning

This experiment examines how effectively Schema Net-
works and PNs are able to learn a new Breakout variation
after pretraining, which examines how well the two mod-
els can transfer existing knowledge to a new task. Fig. 3a
shows the learning rates during 100k frames of training on
Mini Breakout. In a second experiment, we pretrained on

Large Breakout for 100k frames and continued training on
the Middle Wall variation, shown in Fig. 1b. Fig. 3b shows
that PNs require significant time to learn in this new en-
vironment, while Schema Networks do not learn anything
new because the dynamics are the same.

5.2. Zero-Shot Generalization

While the moving obstacles variation required additional
training to adapt to the new dynamics, many Breakout vari-
ations can be constructed that all involve the same dynam-
ics. If a model correctly learns the dynamics from one
variation, in theory the others could be played perfectly by
planning using the learned model. Rather than comparing
transfer with additional training using PNs, in these vari-
ations we can compare zero-shot generalization by train-
ing A3C only on Standard Breakout and Schema Networks
only on Mini Breakout. Fig. 1b-e shows some of these vari-
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Half Negative Bricks
A3C Image Only 5.95± 5.53
A3C Image + Entities −1.75± 6.93
Schema Networks 6.34± 4.53

Table 2. Average Score per Episode on Half Negative Bricks
A3C was trained on 200k frames of Random Negative Bricks,
and Schema Networks were trained on 100k frames of Mini Ran-
dom Negative Bricks, both to convergence. Testing episodes were
limited to 1000 frames.

ations. Here are brief descriptions:

• Offset Paddle (Fig. 1d): The paddle is shifted upward
by a few pixels.

• Middle Wall (Fig. 1b): A wall is placed in the middle
of the screen, requiring the agent to aim around it to
hit the bricks.

• Random Target (Fig. 1e): A group of bricks is
destoyed when the ball hits any of them and then reap-
pears in a new random position, requiring the agent to
delibarately aim at the group.

• Juggling (Fig. 1f, enlarged from actual environment
to see the balls): Without any bricks, three balls are
launched in such a way that a perfect policy could jug-
gle them without dropping any.

Table 1 shows the average scores per episode in each
Breakout variation. These results show that A3C has failed
to recognize the common dynamics and adapt its policy ac-
cordingly. This comes as no surprise, as the policy it has
learned for Standard Breakout is no longer applicable in
these variations. Simply adding an offset to the paddle is
sufficient to confuse A3C, which has not learned the causal
nature of controlling the paddle with actions and control-
ling the ball with the paddle. The Middle Wall and Random
Target variations illustrate that Schema Networks are aim-
ing to deliberately cause positive rewards from ball-brick
collisions, while A3C struggles to adapt its policy accord-
ingly. The Juggling variation is particularly challenging,
since it is not clear which ball to respond to unless the
model understands that the lowest downward-moving ball
is the most imminent cause of a negative reward. By trans-
ferring the correct causal dynamics from Mini Breakout,
Schema Networks outperform A3C in all variations.

5.3. Testing for Learned Causes

To better evaluate whether these models are truly learning
the causes of rewards, we designed one more zero-shot gen-
eralization experiment. We trained both Schema Networks

and A3C on a Mini Breakout variation in which the color
of a brick determines whether a positive or negative reward
is received when it is destroyed. Six colors of bricks pro-
vide +1 reward, and two colors provide -1 reward. Negative
bricks occurred in random positions 33% of the time dur-
ing training. Then during testing, the bricks were arranged
into two halves, with all positive colored bricks on one half
and negative colored bricks on the other. If the causes of re-
wards have been correctly learned, the agent should prefer
to aim for the positive half whenever possible. As Table 1
shows, Schema Networks have correctly learned from ran-
dom arrangements which brick colors cause which rewards,
preferring to aim for the positive half during testing, while
A3C demonstrates no preference for one half or the other,
achieving an average score near zero.

6. Discussion and Conclusion
In this work, we have demonstrated the promise of Schema
Networks with strong performance on a suite of Break-
out variations. Instead of learning policies to maximize
rewards, the learning object for Schema Networks is de-
signed to understand causality within these environments.
The fact that Schema Networks are able to achieve rewards
more efficiently than state-of-the-art model-free methods
like A3C is all the more notable, since high scores are a
byproduct of learning an accurate model of the game.

The success of Schema Networks is derived in part from
the entity-based representation of state. Our results suggest
that providing Deep RL models like A3C with such a repre-
sentation as input can improve both training efficiency and
generalization. This finding corroborates recent attempts
(Usunier et al., 2016; Garnelo et al., 2016; Chang et al.,
2016; Battaglia et al., 2016) to incorporate object and rela-
tional structure into neural network-based models.

The environments considered in this work are conceptually
diverse but also simplified in a number of ways with re-
spect to the real world: states, actions, and rewards are all
discretized as binary random variables; the dynamics of the
environments are deterministic; and there is no uncertainty
in the observed entity states. In future work we plan to ad-
dress each of these limitations, adapting Schema Networks
to continuous, stochastic domains.

Schema Networks have shown promise toward multi-task
transfer where Deep RL struggles. This transfer is en-
abled by the causal understanding embedded in the net-
works, which in turn allows for planning in novel tasks.
As progress in RL and planning continues, robust gener-
alization from limited experience will be vital for future
intelligent systems.
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