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Abstract

AI has seen remarkable progress in recent years, due to
a switch from hand-designed shallow representations, to
learned deep representations. While these methods excel with
plentiful training data, they are still far from the human abil-
ity to learn concepts from just a few examples by reusing
previously learned conceptual knowledge in new contexts.
We argue that this gap might come from a fundamental mis-
alignment between human and typical AI representations:
while the former are grounded in rich sensorimotor expe-
rience, the latter are typically passive and limited to a few
modalities such as vision and text. We take a step towards
closing this gap by proposing an interactive, behavior-based
model that represents concepts using sensorimotor contingen-
cies grounded in an agent’s experience. On a novel conceptual
learning and benchmark suite, we demonstrate that conceptu-
ally meaningful behaviors can be learned, given supervision
via training curricula.

1 Introduction

The field of AI has seen remarkable progress in recent years,
fueled in large part by advances in deep representation learn-
ing. In narrow application domains and with enough train-
ing data, deep representations deliver results that approach
or exceed human performance (Krizhevsky, Sutskever, and
Hinton 2012; Mnih et al. 2013; Silver et al. 2016; Lake et al.
2016).

Despite these advances, current deep representation
learning-based AI still faces two main challenges:

(1) There is a clear difference between how human con-
ceptual understanding is grounded in rich, physical, senso-
rimotor interaction with the environment, and the typical
grounding of current deep learning systems that passively
associate sensory data with textual labels. As an example,
consider the human concept of containment, characterized
by being (un-)able to move oneself or a contained object
relative to the confines of a container. That is, containment
is constituted by a particular way of interacting with a con-
tainer, or more generally (in the framing of sensorimotor
contingency theory): “(concepts) are themselves techniques
or means for handling what there is” (Noë 2015).
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1: cl_self-in-left-corner_vs_on-hline

3: ba_self-in-potential-container_from_
left-touches-on-floor

5: ba_self-on-something_from_directly-above

  7: ba_self-touches-target_from_right-on-
floor_with_right-nontarget

2: cl_self-in-right-corner_vs_on-hline

4: ba_self-in-potential-container_from_
right-touches-on-floor

6: ba_self-ontop-object_from_left-touches-
on-floor

SMC

Figure 1: (Left) Example PixelWorld (PW) test environ-
ments. Red: agent (self), yellow: agent trajectory, white: ob-
jects, blue: floor & frame (see Fig. S11 for detailed annota-
tion). (Right) Hierarchical SMC invocations rolled out over
time for two concepts (see Sect. 3.3) that share the same sup-
ply of low-level SMCs from the canonical curriculum (see
Sect. 3.4). Dots show time spent in SMCs (gray) or primi-
tive actions: SIG0 (red), SIG1 (green), and direction (blue).
The active 7 of 26 SMCs included in the curriculum are
illustrated. Note that SMC 2 (cl self-in-right-corner vs on-
hline) is shared but used in different contexts by the two ex-
amples: it confirms the container in (a), but rules it out in
(b), motivating the agent to move on to the actual container
to its left (via SMC 7).
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A state-of-the-art image captioning or visual question an-
swering system (Antol et al. 2015; Karpathy and Fei-Fei
2015) would likely take note of the correlation between con-
cave shapes and utterances of “container”, “box”, etc., but
fail to capture the true, physical meaning of containment,
limiting its ability to generalize. Such systems lack the ca-
pacity for interaction and so cannot provide an adequate
general representation of concepts, such as containment, for
which interaction is an essential feature. Representing such
concepts is a key challenge that we seek to address.

(2) Current deep representations tend to be tailored to-
wards specific applications. Once acquired, knowledge can
hardly be reused in novel tasks, due to the lack of a com-
mon, shared representation, despite great efforts in transfer
learning and domain adaptation (Pan and Yang 2010).

In this paper, we suggest a conceptual representation that
directly addresses both challenges. While we demonstrate it
in the context of seemingly simple simulated environments,
we believe that the underlying ideas of behavior-based con-
cept representation have broader applicability, in particular
when combined with a more powerful perception system.

We address challenge (1) by assuming the perspective
of an embodied agent that interacts with the environment
through a series of actions and observations (Sutton and
Barto 1998), thereby gaining grounded experience. As we
show in our experiments (Sect. 5), this representation in-
cludes not only the ability to interactively test for concept
presence (e.g., “is self inside a container?”, Fig. 1 (a)), but
also the ability to affect the environment to change whether
the concept holds (e.g., “bring about containment of self”,
Fig. 1 (b)). We address challenge (2) by choosing behavior
itself as a basic unit of representation. Everything is a behav-
ior (e.g., detecting a visual feature, verifying the presence of
container walls, moving into a container) that can function
as a building block in conceptual knowledge representation.

In particular, our approach is based on a simplified notion
of sensorimotor contingencies (SMCs) (O’Regan and Noë
2001; O’Regan 2011): extended behaviors that are indica-
tive of the sensorimotor laws governing the environment.
SMCs integrate perception and action into a single represen-
tational unit. Information-gathering actions, such as looking
for a handle on a cup, or feeling for a hidden button, are
clear examples of such integration. Similarly, many actions
include elements of perception; for example, taking a step
involves feedback on how that step is landed. Furthermore,
many perceptual processes can benefit from close integra-
tion with action; for example, a contour may be detected by
following along it with eye movements.

We approximate this notion by combining each behavior
with a binary signal action: we can think of this action as
the agent’s own assessment of the behavior’s outcome (e.g.,
whether a concept is present or was brought about). This
representation naturally lends itself to hierarchical composi-
tion: a higher-level SMC can invoke lower-level SMCs in the
same way a computer program can invoke other programs,

1PixelWorld and supplementary material containing all cur-
ricula, dataset specs, and supplemental figures can be found at
https://github.com/vicariousinc/pixelworld.

and is informed about their outcomes in the form of binary
return values. Each higher-level SMC hence effectively ab-
stracts away the details of lower-level SMCs’ execution.

On the technical level, we draw from recent advances in
reinforcement learning (RL), and formalize SMCs as hierar-
chical stochastic policies that are learned via policy gradient
methods (Peters and Schaal 2008; Schulman et al. 2015). We
use a set of related, auxiliary binary classification and bring-
about-type tasks to guide exploration and compare different
curricula of these tasks in our experiments (Sect. 5).

Our paper makes the following specific contributions:
(i) We introduce a representation of conceptual knowl-

edge based on the notion of sensorimotor contingencies. It
can be learned from interaction with an environment, is com-
positional, and encompasses both diagnostic tests for con-
cept presence and the ability to change the state of the en-
vironment such that concept presence is achieved. (ii) We
introduce PixelWorld1 (PW), a novel, interconnected suite
of conceptual learning and benchmark environments, drawn
from a common distribution. In contrast to prior work em-
phasizing unconstrained variability (Brockman et al. 2016),
PW formalizes environment generation as a family of con-
straint satisfaction problems, allowing for the precise char-
acterization of both individual concepts and their relations –
a vital ingredient for systematic experimentation related to
interdependent concepts. (iii) We provide an in-depth analy-
sis of our SMC-based representation on PW, quantifying the
impact of both making the transition from passive to inter-
active concept representation and adding the ability to reuse
behavior in hierarchical composition.

2 Related work

Our paper draws inspiration mainly from three different re-
search directions: sensorimotor contingency theory, concept
learning, and factored behavior representations in RL.

Sensorimotor contingencies. The importance of action
in perception has long been acknowledged in the cognitive
science and robotics communities. SMC theory (O’Regan
and Noë 2001), in particular, has inspired a range of stud-
ies in which the relationships between a robotic agent’s ac-
tions and sensory observations are modeled in order to learn
skilled behaviors or to improve the quality of its state pre-
dictions. These studies tend to focus on narrow problem do-
mains, including classifying objects according to their phys-
ical responses to manipulation (Hogman, Bjorkman, and
Kragic 2013), segmenting objects via push-induced object
movements (Bergström et al. 2011; Van Hoof, Kroemer, and
Peters 2013), learning to navigate (Maye and Engel 2011;
2012; 2013), learning to manipulate objects in a general-
izable manner (Sánchez-Fibla, Duff, and Verschure 2011),
learning the structure of complex sensorimotor spaces such
as a saccading, foveated vision system (Laflaqui 2016), and
categorizing objects and their relations via programmed be-
haviors (Sinapov et al. 2014). (Bohg et al. 2016) provides an
in depth review of robot-based sensorimotor interactions.

While this previous work operationalizes SMCs as pre-
dictive models of the effects of actions on the environ-
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Figure 2: Concept “depends-on” relations for canonical cur-
riculum, totaling 85 different concepts distributed among 2
levels. Edges demonstrate the reuse of low-level concepts
(right) by high-level concepts (left). Dark nodes are classi-
fication concepts, light nodes bring-about. Blue: outgoing
edges from one particular high-level concept; orange: in-
coming edges to one particular low-level concept.

ment state (Maye and Engel 2011; Drescher 1991), our
view is distinguished by treating SMCs as sensorimotor
programs that learn to characterize and affect the environ-
ment directly. Similar attempts have typically focused on
isolated, low-level aspects of sensorimotor perception, such
as color (Philipona and O’Regan 2006), space (Philipona,
O’Regan, and Nadal 2004), or object affordances (Gibson
1977; Grabner, Gall, and Van Gool 2011). In contrast, our
approach utilizes hierarchical composition of lower-level
concepts to learn more complex concepts. We believe our
paper to be the first to suggest a fully compositional repre-
sentation of conceptual knowledge inspired by SMCs.

Concept learning. A concept is knowledge that is ab-
stracted from one context for reuse in new contexts. Con-
cept learning is an area of research that focuses on how

conceptual knowledge is acquired. A prominent direction
in concept learning develops probabilistic models of hu-
man generalization ability, applied to hypothesis spaces of
various kinds, including numerical concepts (Tenenbaum
1999), relational data (Kemp et al. 2006), and visual ob-
ject classes (Jia et al. 2013). While these approaches achieve
remarkable results in concept learning from few exam-
ples, they are applied to passive, purely sensory data. No-
table exceptions include recent work (Lake, Salakhutdinov,
and Tenenbaum 2012; Ellis, Solar-Lezama, and Tenenbaum
2015) that formalizes concept learning as motor program in-
duction, applied to character recognition and synthetic vi-
sual reasoning (SVRT) tests. In contrast, our formulation
does not attempt a full, generative reconstruction of the en-
vironment, but instead derives diagnostic information from
partial observations of local sensors in a partially observable
Markov decision process (POMDP) setting.

Factored behavior representations. The technical imple-
mentation of our approach draws from a large body of work
in RL that factors behavior into simpler building blocks. Pio-
neered by early work on agent architectures (Agre and Chap-
man 1998; Brooks 1987), factorization has been proposed
in the form of hierarchical policies (Singh 1992; Barto and
Singh 2004; Marthi et al. 2005; Jonsson and Barto 2005;
Barto and Mahadevan 2013), spatial maps (Ring, Schaul,
and Schmidhuber 2011), or more general representations
that collectively implement behavior (Konidaris and Barto
2007; 2009; Simsek and Barto 2009). The novel contri-
bution of our work lies in the duality between factored
behavior representation and encoding of conceptual infor-
mation. While the diagnostic tests learned by our method
are related to predictive state representations and general
value functions (Sutton et al. 2011; Schaul and Ring 2013;
Schaul et al. 2015), we extend these notions by hierarchical
reuse and compositional knowledge representation.

3 Sensorimotor contingency-based concepts

In this section, we describe the technical foundation of our
SMC-based representation. We first introduce the represen-
tation of individual, flat contingencies (Sect. 3.1) and their
learning (Sect. 3.2), followed by their hierarchical composi-
tion (Sect. 3.3), and training via a curriculum (Sect. 3.4).

3.1 Sensorimotor contingencies (SMCs)

We formally represent SMCs as stochastic policies in a
POMDP of a particular structure. Recall that an undis-
counted POMDP (S,A,O,P, R, ρ0) consists of a finite set
S of states, a finite set A of actions, a finite set O of ob-
servations, a function P : S × O × S × A → [0, 1] giving
the probability P(s′, o|s, a) that action a ∈ A performed in
state s ∈ S results in observation o ∈ O and successor state
s′ ∈ S , a function R : S ×A → R giving the immediate re-
ward R(s, a) of performing action a ∈ A in state s ∈ S , and
a function ρ0 : S → R giving the distribution of the initial
state. A stochastic policy is a function π : A × O → [0, 1]
which gives the probability π(a|o) that the policy performs
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cl_pushable-floor-pixel
_vs_unpushable (4)

cl_pushable-floor-pixel-touches-self
-and-hover-pixel_vs_unpushable (1)

pushable

Figure 3: Concept “depends-on” relations for pushable curriculum, totaling 11 different concepts distributed among 6 levels
and illustrating the detailed conceptual decomposition in the pushable curriculum leading to the concept cl pushable-floor-
pixel vs unpushable. Numerical suffixes refer to difficulty levels in Fig. 5 (c). Coloring is as in Fig. 2.

action a ∈ A given observation o ∈ O. In practice, we con-
sider parametric policies of the form πθ(a|o), where θ ∈ R

n

parameterizes a neural network of a fixed structure.
Our simplified notion of sensorimotor contingen-

cies (O’Regan and Noë 2001; O’Regan 2011) combines two
basic ingredients: a behavior and its outcome, both of which
are jointly represented by a stochastic policy. We further dis-
tinguish two varieties of SMC which capture two related
forms of conceptual knowledge: classification SMCs behave
in the environment in order to determine whether a concept
is present or not (“is self inside a container?”), then signal
using one of two signaling actions SIG1 and SIG0 (the choice
of which is the SMC’s outcome). Bring-about SMCs behave
in the environment in order to bring the environment to a
state in which the concept holds (“bring about containment
of self”). The environment terminates either when the policy
signals success with action SIG1 (outcome) or when it times
out after a certain number of steps.

Embodiment. In order to clearly separate the interactive
aspect of concept representation from other factors, such as
the impact of particular sensory features, we use a simplis-
tic form of sensorimotor embodiment to illustrate our SMC
representation. In particular, our agents perceive their two-
dimensional environment through a small local observation
window (3×3 pixels) centered on a “self” that can be moved
through a set of actions (UP, DOWN, LEFT, RIGHT) and is
represented by a vector of 9 discrete color values. They can-
not directly access any other information about the environ-
ment, in particular, no global frame of reference.

Note that this embodiment requires the agent to learn even
the most basic representations, such as the notion of an ob-
ject, from the ground up – the presence of an object as op-
posed to its absence or the presence of two objects must be
represented in terms of behaviors that interact with the en-
vironmental state. While this might seem like unnecessary
sensory deprivation, it highlights the unique ability of our
approach to compose heterogeneous behaviors into mean-
ingful concept representations. As we show in our experi-
ments (Sect. 5, Fig. 4 (a)), our agents learn to repeatedly
apply object identification behaviors to environments with

multiple objects, which then constitute the representation of
there being multiple objects. Furthermore, behaviors can be
shared and re-used in the context of different higher-level
concepts, e.g., checking for a corner to the right can be
used both for identifying whether the agent is inside a con-
tainer and as part of bringing about being inside a container
(Fig. 1).

3.2 Learning SMCs

Since the goal of our SMC-based representation is to en-
code re-usable information about the environment, its suc-
cess hinges on motivating the agent to learn both behav-
iors that are indicative of environmental states and corre-
sponding signaling of outcomes. To that end, we introduce
two kinds of reward function that encourage the formation
of discriminative (classification) and environment-changing
(bring-about) behaviors, resulting in corresponding SMCs.

Classification. The agent is subjected to a set of train-
ing environments with unobserved binary labels indicating
concept presence or absence, and rewarded whenever it ter-
minates an episode with the correct signal within a prede-
termined number of steps (assuming a fixed mapping be-
tween labels and signals). The agent receives a negative re-
ward for terminating an episode with the incorrect signal.
This reward function can be seen as a compromise between
fully self-motivated exploration (Barto and Singh 2004;
Hester and Stone 2012; Georgeon and Ritter 2012) and su-
pervising full behavior.

Bring-about. The agent is tasked to bring about a change
in the environment (if required) that makes the concept hold.
It receives a reward when it both successfully brings about
and signals that change. To speed up learning, the agent
additionally receives a shaping reward (Ng, Harada, and
Russell 1999) when it successfully brings about the con-
cept. Both rewards are automatically derived during envi-
ronment generation (Sect. 4), and allow for the creation of
training curricula that build up more complicated concep-
tual representations from simpler prerequisite representa-
tions (Sect. 3.3).
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concept CSP expressions pos. example neg. example

cl self-left-of-two-
objects vs one

c ∃f, x, y. floor(f) ∧ on-top(x, f) ∧ on-top(y, f) ∧ on-top(self, f)

g
∃f, x, y. blue-floor(f) ∧ white(x) ∧ white(y) ∧ small-blob(x) ∧ small-blob(y)

∧ on-top(x, f) ∧ on-top(y, f) ∧ on-top(self, f) ∧ ¬touches(x, y)
∧ dir-right-of(x, self) ∧ dir-right-of(y, self)

g ∃f, x. blue-floor(f) ∧ white(x) ∧ small-blob(x) ∧ on-top(x, f)
∧ on-top(self, f) ∧ dir-right-of(x, self)

ba self-in-container
from between-potential-

containers

c ∃x. container(x) ∧ inside-supported(self, x)

g ∃f, x, y. blue-floor(f) ∧ white(x) ∧ white(y) ∧ on-top(x, f) ∧ on-top(y, f)
∧ container(x) ∧ noncontainer(y) ∧ h-between(self, x, y)

g ∃f, x, y. blue-floor(f) ∧ white(x) ∧ white(y) ∧ on-top(x, f) ∧ on-top(y, f)
∧ container(x) ∧ noncontainer(y) ∧ h-between(self, y, x)

Table 1: Examples of CSP-based environment generation using concept filters (c) applied to generator expressions (g) to yield
environment samples (all objects, floor, and frame shown in black; positive concept region shown in green for bring-about).

3.3 Compositional hierarchies of SMCs

Having introduced SMCs as the basic building blocks of our
representation (Sect. 3.1), we can now combine them into
compositional hierarchies that jointly represent multiple as-
pects of an environment (such as the existence of a container
and a distractor somewhere on the floor, Fig. 1). As an SMC
consists of a behavior and an outcome, there are two ways
to reuse an already learned SMC: reusing its behavior as an
additional action, and reusing its outcome as an additional
observation. We apply both in tandem in our experiments.

When an SMC is used as an action, the agent gives con-
trol to the SMC’s policy until it signals. This allows re-use
of behaviors that have already proven useful for identifying
or bringing about other concepts. This composition can be
nested, with SMCs called as actions calling further SMCs
as actions, giving a hierarchical structure to behavior. The
re-use of SMCs as actions is related to the use of options in
reinforcement learning (Sutton, Precup, and Singh 1999).

Using an SMC simply as an action would discard a valu-
able bit of information: its outcome. To avoid this, the en-
vironment maintains a vector with a distinct entry per avail-
able SMC recording the result returned by the SMC the last
time it was executed. Note that this effectively adds state
to the policy, enhancing the representational power of non-
recurrent policies in the POMDP setting (however, all exper-
iments in Sect. 5 use recurrent policies).

In practice, while all SMCs are both actions and ob-
servations, the emphasis can vary. Bring-about SMCs are
mainly useful for the changes they bring about in the
environment, while classification SMCs are mainly use-
ful for the information they provide. A higher-level SMC,
whether classification or bring-about, typically involves a
mixture of action-focused (bring-about) and observation-
focused (classification) lower-level SMCs. For example,
in Fig. 1, the relatively simple higher-level classifica-
tion SMC cl self-in-container vs noncontainer is composed
of two lower-level classification SMCs (cl self-in-left-
corner vs on-hline and cl self-in-right-corner vs on-hline)
that test for left and right corners, and one lower-level bring-
about SMC ba self-on-something from directly-above that
moves down to find a surface. Similarly, the higher-
level bring-about SMC ba self-in-container from between-
potential-containers involves two lower-level classification
SMCs as well as five lower-level bring-about SMCs.

3.4 Curricula

The hierarchical compositional structure lends itself to a
training regime in which lower-level SMCs are trained be-
fore higher-level SMCs in a greedy fashion. In Sect. 5, we
compare two ways of training. First, we train SMC hierar-
chies under the explicit guidance of hand-designed training
curricula (i.e., defining a DAG with nodes i corresponding
to training environments Ei, such that SMCs trained on Ei
are free to invoke SMCs trained on any environment Ej for
which (i, j) is a graph edge, Figs. 2 & 3). Second, we ex-
plore a weaker form of supervision, by training a common
set of shared SMCs for related groups of concepts in the
spirit of a canonical curriculum. While this still involves hu-
man judgment, it is up to the agent to separate useful from
potentially distracting behaviors (Fig. 1).

4 The PixelWorld concept benchmark

We introduce PixelWorld (PW), a novel learning and bench-
mark suite of presently 96 related sets of environments. In
contrast to existing loose environment collections such as
OpenAI gym (Brockman et al. 2016) or ALE (Bellemare
et al. 2013), it is explicitly designed to feature re-occurring
content that enables reuse of learned representations across
environments. In contrast to PyVDGL (Schaul 2013), PW
allows the automatic creation of entire distributions of ran-
domized environments that exhibit certain properties, not
just instances. In contrast to Omniglot (Lake, Salakhutdi-
nov, and Tenenbaum 2016), PW is fully interactive, not a
collection of static images.

Dynamics. PW instances are discrete, 2D environments
(size 20×37) that are inhabited by an agent (self) and one or
more objects of different kinds, all composed of a few pixels
(e.g., lines, blobs, containers, and enclosures). PW inhabi-
tants adhere to the laws of a simple physics engine, includ-
ing collision detection and agent-environment interactions
like pushing or grasping. PW also features multiple depth
planes and resulting occlusion, although this is not explored
further in the present experiments. While PW might seem
simplistic at first glance, it confronts the agent with a rich
repertoire of concepts that can be present, absent, or brought
about in countless combinations.
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4.1 Concepts and environments

Ground truth for a concept (classification or bring-about) is
represented by a sample set of PW environments that is gen-
erated automatically by a rejection sampler working in tan-
dem with a general purpose constraint satisfaction problem
(CSP) (Russell and Norvig 2009) solver. Environment distri-
butions are specified in a fragment of first-order logic, using
a predefined vocabulary of unary and binary predicates that
can be combined using conjunction and negation. The spec-
ification consists of two key parts: a set of generators and
a concept filter. Generators are conjunctions of first-order
logic expressions that specify random samples of environ-
ment specifications (up to but not including reward func-
tions). For a given concept, to create a new environment
specification, one of the generators is selected uniformly at
random and then that generator is invoked. The concept fil-
ter is a first-order logic expression that filters the generated
environments into those that satisfy the concept and those
that do not (Table 1 gives examples).

For classification environments, environment specifica-
tions that satisfy the concept filter are associated with a
positive classification label (rewarding +1 for SIG1, −1 for
SIG0, and 0 otherwise), while those that do not are associ-
ated with a negative classification label (instead rewarding
−1 for SIG1, +1 for SIG0).2 For bring-about environments,
there are no labels. Instead, the concept filter is evaluated at
every step of execution (rewarding +1 iff both the expres-
sion holds and SIG1, and 0 otherwise).

We use a short-hand notation that identifies concepts (sets
of environments) by a prefix cl (classification), ba (bring-
about), infix vs (positive, negative generators), from
(starting condition), and an optional suffix with describing
potential distractors.

4.2 Training curricula

Figs. 2 & 3 depict two training curricula used in our experi-
ments (Sect. 5) as directed acyclic graphs: each node is a set
of environments corresponding to a binary classification or
bring-about task for a particular concept, and each directed
edge is a “depends-on” relation, used to train different lev-
els of SMCs in reverse topological order. Curricula give the
opportunity to reuse earlier SMCs, but don’t require reuse.
Fig. 5 gives experimental results for the higher-level con-
cepts in Figs. 2 & 3.

We divide our concepts into categories depending on the
contrasts they make: containment, contrasting containers
from visually similar non-containers such as containers with
holes in them; objcon, contrasting containers from other ob-
jects; objects, contrasting configurations of one or more ob-
jects; and pushable, contrasting immovable from pushable
objects. The first three categories include large collections of
first-level concepts that are included in both hand-designed
and canonical curricula targeted at learning of second-level
concepts. The pushable category includes a smaller, more
focused set of concepts designed to demonstrate learning of
a deeper hierarchical curriculum (up to level 6). Note that

2This filtering is balanced: equal numbers of positively and neg-
atively classified environments are generated.

with pushable concepts, the agent has to assess the effects
of push-related actions based entirely on changes relative to
reference objects in the environment due to its limited sen-
sors.

5 Experiments

In this section, we perform an in-depth evaluation of our
approach, highlighting its ability to ground sensorimotor
concepts in environmental interactions and enable effec-
tive reuse of learned representations. We give examples of
learned classification and bring-about SMCs, and we quan-
tify the impact of using SMCs in compositional hierarchies
in connection with different curricula, considering classifi-
cation and bring-about concepts.

Methods. We evaluate and compare the following variants
of our SMC-based approach (Sect. 3):

• smc-base: a flat policy trained on a set of environments.

• smc-curr: a hierarchical policy, trained using a curriculum
of multiple sets of environments (Sect. 3.4). Specifically,
we manually design 1–3 intuitive curricula per concept,
and report best case (maximum) performance in Fig. 5.

• smc-canon: a hierarchical policy, trained using a canon-
ical curriculum (shown in Fig. 2) in which we choose
larger sets of 11–15 SMCs for related groups of concepts.

Implementation details. We represent stochastic policies
as Gated Recurrent Unit (GRU) (Chung et al. 2014) net-
works of a fixed size (one hidden layer with 32 units), which
we learn using natural policy optimization (NPO) (Schul-
man et al. 2015) implemented in RLLab (Duan et al. 2016).
We run NPO for 200 iterations with a batch size of 2,000
and a maximum trajectory length of 100. We initialize our
networks following (Glorot and Bengio 2010), adjusting the
output layer’s bias to reduce the initial probability of per-
forming a signal, increasing initial expected episode length
and exploration.

Protocol. Each method is trained on a dedicated training
set and tested on a held out test set (50 examples each), av-
eraging over r = 10 repeated rollouts of the learned policies
on each test environment, for 5 different random seeds. For
each seed, test performance is evaluated on the best perform-
ing iteration (as determined on the training set), and the best
test performance across seeds is reported. When hierarchi-
cal SMCs reuse lower level SMCs, they use those from the
two best performing seeds (determined on the training set).
Ultimately, hierarchical policies have access to both more
training environments and more total training iterations than
smc-base. While this might seem like an unfair comparison,
we stress that our contribution is precisely to make this addi-
tional experience available to the agent in a way that affords
re-use of previously learned representations.
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(a) cl_self-left-of-two-objects_vs_one (b) ba_self-in-container_from_between-potential-containers
seed 0 seed 1 seed 2 ground truth seed 0

smc-canon

smc-base

smc-curr

smc-base

seed 1 seed 2 ground truth

easy (1)

medium (2)

hard (3)

easy (4)

medium (5)

hard (6)

Figure 4: Qualitative results for smc-curr, smc-canon, and smc-base, for two concepts: (a) cl self-left-of-two-objects vs one,
(b) ba self-in-container from between-potential-containers. Rows correspond to test examples, showing agent trajectories (yel-
low) of 3 independently trained (seeded) policies, averaged over 10 rollouts. Green environment background denotes positive
ground truth for classification SMCs, red negative ground truth. Per method, test examples are sorted by difficulty (average test
performance across seeds), and roughly bucketed for illustrative purposes.

Evaluation. For classification concepts, we evaluate per-
formance on a series of binary classification tasks, each cor-
responding to a distinct sensorimotor concept in PW (see
Figs. 2 & 3). For bring-about concepts, the agent is assessed
by the fraction of successful bring-about behaviors.

5.1 Examples

We begin by examining learned behavior for two
specific concepts: object number classification (cl self-
left-of-two-objects vs one, Fig. 4 (a)), and bring-about
containment (ba self-in-container from between-potential-
containers, Fig. 4 (b)). The former task demonstrates a
large advantage of curriculum (smc-base: 52.6%, smc-curr:
90.4%, smc-canon: 89.0%, see Fig. 5 (b)). While smc-base
fails to look for the second object on the right (Fig. 4 (a),
rows 4,5,6), smc-curr reliably climbs the first object in order
to verify a potential second one (rows 1,2), but sometimes
gets stuck in a concavity (row 3). For the latter task, smc-
base fails to learn a successful policy (48.4% success). In
Fig. 4 (b), row 6, smc-base does not continue the search for a
container to move into in case of a distractor on the right. In
contrast, curriculum-based approaches perform well (smc-
curr: 82.0%, smc-canon: 71.2%). smc-canon (row 2) uti-
lizes previously learned search, climbing, and containment-
checking behaviors to enter a potential container, determine
that it is not a container, and move on to the real container.

5.2 Classification concepts

We add as a reference a passive CNN that (unlike the SMC
methods) has access to the full, global observation of the
environment, but not to any actions (2 conv + 1 FC layer
(8, 16, 8) with l2 regularization)1. Fig. 5 (a) (ALL) gives the

corresponding summary results, showing binary classifica-
tion accuracy averaged across concepts for four methods:
cnn, smc-base, smc-curr, and smc-canon.

Of primary interest, there is a clear advantage for cur-
riculum (smc-base: 74.5%, smc-curr: 84.9%, smc-canon:
80.2%; smc-curr vs. smc-base: t(34) = 4.9, p = .00002,
smc-canon vs. smc-base: t(34) = 2.3, p = .025). This ad-
vantage is most pronounced for concepts that involve mul-
tiple objects or complex sequences of behaviors to verify
a given concept (e.g., cl self-between-two-objects vs not-
between, cl self-left-of-two-objects vs one, Fig. 5 (b)).
Overall SMC performance is comparable to the cnn
(79.9%), but this overall similarity masks large differences
at the level of individual concepts. Fig. 5 (a) shows clas-
sification results subdivided according to concept category
(Sect. 4.2). For containment (containers vs. visually similar
non-containers), the SMC approach clearly outperforms the
cnn. The categories objects and objcon involve more visual
distinctions that enable better performance by the cnn and
thus less advantage for the interactive SMC approach.

For pushable concepts (Fig. 3, not included in the over-
all averages reported above), the observed advantage of
the SMC approach over the cnn is particularly pronounced
(Fig. 5 (c)), especially for smc-curr. Each numbered con-
cept in Fig. 5 (c) utilizes a combination of lower-numbered
concepts in its curriculum and a shared set of basic concepts
(e.g., classifying whether the self is touching a particular ob-
ject).

5.3 Bring-about concepts

For bring-about concepts, hierarchical SMCs outperform flat
SMCs for 14 out of 16 tasks, with a large average difference
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Figure 5: Quantitative results. (a & b) Performance on classification tasks, (a) averaged by category and (b) organized by
category (each task is a box in the left column of Fig. 2). (c) Performance on pushable tasks involving classifying whether an
object is pushable. Tasks are ordered according to difficulty, determined by the degree to which initial environment states allow
classification without additional action. Fig. 3 shows corresponding task labels. (d & e) Performance on bring-about tasks, (d)
averaged by category and (e) organized by category. Error bars are standard error.

in performance (Fig. 5 (d-e); smc-base: 52.7%, smc-curr:
74.5%, smc-canon: 75.0%; smc-curr vs. smc-base: t(16) =
4.1, p = .0008; smc-canon vs. smc-base: t(16) = 4.4, p =
.0005). Again, the advantage is greatest for concepts that
require complex interaction sequences, such as ba self-in-
container from between-potential-containers (visualized in
Fig. 4 (b)) and other tasks involving containment.

Role of hierarchy. In order to verify that hierarchical re-
use of SMCs is indeed taking place and responsible for im-
proved performance, we conduct another series of experi-
ments in which primitive actions are excluded from hierar-
chical SMCs. For both classification and bring-about con-
cepts, performance is nearly identical whether including or
excluding primitive actions (classification: smc-curr: 84.9%
vs. 82.7%, smc-canon: 80.3% vs. 81.1%; bring-about: smc-
curr: 74.5% vs. 71.6%, smc-canon: 75.1% vs. 75.1%).

6 Limitations

The approach in this paper has several limitations which
present opportunities for future work:

1. The need to construct the large number of different envi-
ronments that form the curriculum. Replacing these cur-
ricula at least in part by using intrinsic motivation (Barto
and Singh 2004) is one natural avenue for future work.

2. In the present work, bring-about SMCs are only used in
situations where it is possible to bring about the concept.
An extension to cases where it cannot, allowing the SMC
to signal whether it cannot achieve the concept, would in-
crease the power of this representation.

3. PixelWorld, while capable of representing a wide variety
of concepts, cannot match the range of concepts express-
ible in the real world. In light of this, extensions to robotic
domains would be especially interesting.

7 Conclusions

We have introduced a representation of conceptual knowl-
edge inspired by the notion of SMCs. In contrast to most
prior work in concept learning, it assumes the perspective
of an embodied agent interacting with the environment, and
uses behavior itself as a basic unit of representation. In
extensive experiments on PixelWorld, a novel conceptual
learning and benchmark suite, we have demonstrated that
conceptually meaningful behaviors can indeed be learned
and successfully applied to test environments, given super-
vision in the form of specific and more canonical training
curricula. This work opens a path to richer conceptual repre-
sentations, with natural extensions to robotic domains with
intrinsic motivation.
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